| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 4a | $2 \alpha+\frac{1}{2}\left(1-\frac{\alpha^{2}}{2}\right)$ | M1 | 1.2 |
|  | $2 \alpha+\frac{1}{2}\left(1-\frac{\alpha^{2}}{2}\right)=0 \Rightarrow 2 \alpha+\frac{1}{2}-\frac{\alpha^{2}}{4}=0 \Rightarrow \alpha=\ldots$ | dM1 | 1.1b |
|  | $\alpha=-0.243$ (3dp) only | A1 | 2.3 |
|  |  | (3) |  |
| b | $\mathrm{f}^{\prime}(0)=\frac{1}{2} \cos 0 \Rightarrow \ldots \Rightarrow y=\ldots x+3$ | M1 | 1.1b |
|  | $y=\frac{1}{2} x+3$ | A1 | 1.1b |
|  |  | (2) |  |
| (5 marks) |  |  |  |
| Notes |  |  |  |
| (a) Note on EPEN this is M1A1A1 but we are marking this as M1dM1A1 <br> Accept to be in terms of $\alpha$ or another variable e.g. $x$ <br> Note: -0.243 with no working is $\mathbf{0}$ marks <br> M1: Fully substitutes $\cos x=1-\frac{x^{2}}{2}$ into the derivative. <br> dM1: Attempts to multiply out to achieve a 3TQ (=0) and attempts to find a value for $\alpha$. Condone slips. Allow solving the quadratic via any method (usual rules apply). <br> If they use a calculator then you may need to check this. <br> A1: $(\alpha=)-0.243$ only cao Can only be scored provided a correct 3 TQ is seen. If both roots found then the other one must be rejected (or a choice made of -0.243 e.g. underlining it or a tick) <br> Condone $x=-0.243$ |  |  |  |
| (b) <br> M1: Attempts to find the gradient of the curve when $x=0$ and achieves an equation of the form $y=" \mathrm{f}^{\prime}(0) " x+3$. <br> $x=0$ must be fully substituted in and a value must be found for the gradient. Do not allow this mark if they attempt to use a changed gradient e.g. the gradient of the normal. <br> Also allow attempts using the small angle approximation: $\mathrm{f}^{\prime}(x) \approx 2 x+\frac{1}{2}\left(1-\frac{x^{2}}{2}\right) \text { when } x=0, \mathrm{f}^{\prime}(0)=" \frac{1}{2} " \Rightarrow y=" \mathrm{f}^{\prime}(0) " x+3$ <br> A1: $\quad y=\frac{1}{2} x+3$ or equivalent in the form $y=m x+c$ isw Stating just the values $m=0.5, c=3$ without the correct equation is A 0 |  |  |  |

