Questi	on Scheme	Marks	AOs
4 a	$2\alpha + \frac{1}{2}\left(1 - \frac{\alpha^2}{2}\right)$	M1	1.2
	$2\alpha + \frac{1}{2}\left(1 - \frac{\alpha^2}{2}\right) = 0 \Longrightarrow 2\alpha + \frac{1}{2} - \frac{\alpha^2}{4} = 0 \implies \alpha = \dots$	dM1	1.1b
	$\alpha = -0.243 \text{ (3dp) only}$	A1	2.3
		(3)	
b	$f'(0) = \frac{1}{2}\cos 0 \Longrightarrow \Longrightarrow y =x + 3$ $y = \frac{1}{2}x + 3$	M1	1.1b
	$y = \frac{1}{2}x + 3$	A1	1.1b
		(2)	
(5 marks)			
Notes (a) Note on EPEN this is M1A1A1 but we are marking this as M1dM1A1			
Accept to be in terms of α or another variable e.g. x			
Note: -0.243 with no working is 0 marks			
M1: Fully substitutes $\cos x = 1 - \frac{x^2}{2}$ into the derivative.			
dM1: Attempts to multiply out to achieve a 3TQ (= 0) and attempts to find a value for α . Condone slips. Allow solving the quadratic via any method (usual rules apply).			
If they use a calculator then you may need to check this.			
A1: $(\alpha =) -0.243$ only cao Can only be scored provided a correct 3TQ is seen. If both roots found then			
the other one must be rejected (or a choice made of -0.243 e.g. underlining it or a tick)			
	Condone $x = -0.243$		
(b)			
M1: Attempts to find the gradient of the curve when $x = 0$ and achieves an equation of the form $y = "f'(0)"x+3$.			

x = 0 must be fully substituted in and a value must be found for the gradient. Do not allow this mark if they attempt to use a changed gradient e.g. the gradient of the normal.

Also allow attempts using the small angle approximation:

$$f'(x) \approx 2x + \frac{1}{2} \left(1 - \frac{x^2}{2} \right)$$
 when $x = 0$, $f'(0) = "\frac{1}{2}" \Longrightarrow y = "f'(0)"x + 3$

A1: $y = \frac{1}{2}x + 3$ or equivalent in the form y = mx + c isw Stating just the values m = 0.5, c = 3 without the correct equation is A0