Question	Scheme	Marks	AOs
$\mathbf{6 (a)}$	$\frac{1}{2} a$	B 1	2.2 a
(b)	$\log _{2} x(x+8) \Rightarrow \log _{2} x+\log _{2}(x+8)$	$\mathbf{(1)}$	
	$=a+b$	M 1	1.2
	(c)	e.g. $8+\frac{64}{x}=\frac{8 x+64}{x}$	A 1
	$\log _{2} \frac{8}{x}(x+8)=3-\log _{2} x+\log _{2}(x+8)$	B 1	1.1 b
	$3+b-a$	M 1	1.1 b
		A 1	2.2 a

(6 marks)

Notes

Condone omission of base 2 in all parts. If they work in any other base then send to review.
(a)

B1: $\frac{1}{2} a$ or $\frac{a}{2}$ or $0.5 a$ isw
(b)

M1: Takes a factor of x out of the bracket to achieve $\log _{2} x(x+8)$ and attempts to apply the addition law of logs, usually leading to $\log _{2} x+\log _{2}(x+8)$. Condone missing brackets or omission of base 2 .

May be implied by a correct answer. Allow this mark to be scored if they write
$\log _{2} x+\log _{2} x+\log _{2} 8$ (an answer of $2 a+3$ can score M1A0)
$\log _{2} x \times \log _{2}(x+8)$ on its own is M0 but allow the mark to be scored if they proceed to $a+b$
A1: $\quad a+b$ or simplified equivalent (a correct answer with no incorrect \log work seen scores M1A1) isw Note $\log _{2} x \times \log _{2}(x+8)=a+b$ is M1A0 (allow the answer to imply the correct method but withhold the final mark)
(c)

B1: Writes $8+\frac{64}{x}$ as a single fraction e.g. $\frac{8 x+64}{x}$ or $\frac{8}{x}(x+8)$ or $8 x^{-1}(x+8)$ or $8\left(\frac{x^{2}+8 x}{x^{2}}\right)$ which may be implied by later work e.g. $\log _{2} 8-\log _{2} x+\log _{2}(x+8)$
M1: Attempts to apply the laws of logs, uses $\log _{2} 8=3$ and proceeds to $3 \pm \log _{2} x \pm \log _{2}(x+8)$ (or equivalent since $\pm \log _{2} x$ may appear as $\pm \log _{2} \frac{1}{x}$ or $\pm \log _{2} x^{-1}$)
May be implied by $3 \pm b \pm a$ and condone invisible brackets around $x+8$ and condone the omission of base 2.
Note that if they write $\log _{2}(x+8)$ as $\log _{2} x+\log _{2} 8$ this is M0
A1: $\quad 3+b-a$ or simplified equivalent (a correct answer with no incorrect \log work seen is B1M1A1) isw Note $\log _{2} \frac{8}{x}(x+8)=3 \div \log _{2} x \times \log _{2}(x+8) \Rightarrow 3-a+b$ is B1M1A0 (allow the answer to imply the correct method but withhold the final mark)
Note: You may see attempts to work backwards to the answer. If these do not result in the correct answer but you think they are creditworthy then send to review.

