Questi	on Scheme	Marks	AOs	
7(a)	f(x) > 3	B1	1.1b	
		(1)		
(b)	$y = 3 + \sqrt{x - 2} \Longrightarrow x = \dots$	M1	1.1b	
	$f^{-1}(x) = (x-3)^2 + 2$	A1	1.1b	
	x > 35	B1ft	2.2a	
		(3)		
(c)	$f(6) = 3 + \sqrt{6-2} = 5 \Longrightarrow g("5") = \frac{15}{"5"-3} = \dots$	M1	1.1b	
	$=\frac{15}{2}$	A1	1.1b	
		(2)		
(d)	$3 + \sqrt{a^2 + 2 - 2} = \frac{15}{a - 3} \Rightarrow "a^2 - 9 = 15"$	M1	1.1b	
	$a = 2\sqrt{6}$	A1	2.2a	
		(2)		
			(8 marks)	
Notes (a)				
B1:				
	e.g. $y > 3$, range > 3, $f(x) \in (3, \infty)$, $\{f(x): f(x) > 3\}$, $f > 3$ but not e.g. $x > 3$, $f(x) \dots 3$; $[3, \infty)$			
(b)				
M1:	Sets $y = 3 + \sqrt{x-2}$ and attempts to make x the subject (or vice versa). Look for the correct order of			
	operations so score for an expression of the form $(x=)(y\pm 3)^2\pm 2$ or $(y=)(x\pm 3)^2\pm 2$			
A1:	$f^{-1}(x) = (x-3)^2 + 2$ Also accept $f^{-1}: x \to (x-3)^2 + 2$. Condone $f^{-1} = (x-3)^2 + 2$ (or			
AI.	$f^{-1} = y = (x-3)^2 + 2$) but do not allow just $y =$ or $f^{-1} : y =$			
	Also accept other equivalent expressions such as $f^{-1}(x) = x^2 - 6x + 11$ (simple	lified or u	unsimplified)	
	This accept other equivalent expressions such as $1 (x) - x = 0x + 11$ (simplified of unsimplified)			
B1ft:	$x > 3$; or follow through on their part (a). The omission of $x \in \Box$ is condoned.			
	Allow equivalent answers such as $x \in ("3", \infty)$ or $\{x : x > "3"\}$			
Note:	It is also acceptable to define f^{-1} in any variable e.g. as $f^{-1}(t) = (t-3)^2 + 2$ $t > 3$ as long as the variable is used consistently to score M1A1B1. If another variable is used other than x it must be fully defined e.g. $f^{-1}(t) =$ not just $f^{-1} =$			
(c) M1:	Substitutes $x = 6$ into f and substitutes the result into g to find a value for gf(6).			
	Allow an attempt to substitute $x = 6$ into $gf(x) = \frac{15}{\sqrt{x-2}}$ condoning slips. They must proceed to			
	·			
	find a value. Condone arithmetical slips and bracket errors/omissions. Condone for M1 attempts 15 15 15			
	where when dealing with $\sqrt{x-2}$ leads to two different answers e.g. $\frac{15}{\sqrt{6-2}} \rightarrow \pm \frac{15}{2}$			
A1:	$\frac{15}{2}$ only of isw once a correct answer is seen			

A1: $\frac{13}{2}$ only on is once a correct answer is seen

(d)

M1: Attempts to form the equation $3 + \sqrt{a^2 + 2 - 2} = \frac{15}{a - 3}$, and proceeds to a quadratic in *a* (usually

 $a^2 = k$ or $a^2 - k = 15$ but condone arithmetical, miscopying and sign slips. Condone equations which would lead to complex roots.

May be implied by a correct exact answer.

Alternatively, they attempt to form the equation $a^2 + 2 = f^{-1}g(a) \Rightarrow a^2 + 2 = \left(\frac{15}{a-3} - 3\right)^2 + 2$

 \Rightarrow (a+3)(a-3) = 15 \Rightarrow a² -9 = 15 (condone slips)

They should be square rooting both sides so that $\sqrt{a^2+2-2} \rightarrow a$, before multiplying both sides by a-3 and rearranging so that the a^2 term comes from their "(a+3)(a-3)"

May be implied by a correct exact answer for their quadratic in *a* but a correct decimal answer does not imply this mark.

A1: $(a =) 2\sqrt{6}$ or accept $\sqrt{24}$ (they must reject the negative solution if found as $f(a^2 + 2) \neq g(a)$ when $a = -2\sqrt{6}$) $\sqrt{6} \times \sqrt{4}$ is A0 isw $\sqrt{24}$ followed by $4\sqrt{6}$ (incorrect manipulation of the surd) but not followed by $\pm \sqrt{24}$ o.e. A decimal answer on its own or multiple answers e.g. $\pm \sqrt{24}$ score A0.