Question	Scheme	Marks	AOs
7(a)	$\mathrm{f}(x)>3$:	B1	1.1b
		(1)	
(b)	$y=3+\sqrt{x-2} \Rightarrow x=\ldots$	M1	1.1b
	$\mathrm{f}^{-1}(x)=(x-3)^{2}+2$	A1	1.1b
	$x>3$:	B1ft	2.2a
		(3)	
(c)	$f(6)=3+\sqrt{6-2}=5 \Rightarrow g(" 5 ")=\frac{15}{" 5 "-3}=\ldots$	M1	1.1b
	$=\frac{15}{2}$	A1	1.1b
		(2)	
(d)	$3+\sqrt{a^{2}+2-2}=\frac{15}{a-3} \Rightarrow " a^{2}-9=15 "$	M1	1.1b
	$a=2 \sqrt{6}$	A1	2.2a
		(2)	

(8 marks)

Notes

(a)

B1: $\quad \mathrm{f}(x)>3$: o.e.
e.g. $y>3$, range $>3, \mathrm{f}(x) \in(3, \infty),\{\mathrm{f}(x): \mathrm{f}(x)>3\}, \mathrm{f}>3$ but not e.g. $x>3, \mathrm{f}(x) \ldots 3=[3, \infty)$
(b)

M1: Sets $y=3+\sqrt{x-2}$ and attempts to make x the subject (or vice versa). Look for the correct order of operations so score for an expression of the form $(x=)(y \pm 3)^{2} \pm 2$ or $(y=)(x \pm 3)^{2} \pm 2$

A1: $\quad \mathrm{f}^{-1}(x)=(x-3)^{2}+2$ Also accept $\mathrm{f}^{-1}: x \rightarrow(x-3)^{2}+2$. Condone $\mathrm{f}^{-1}=(x-3)^{2}+2$ (or $\left.\mathrm{f}^{-1}=y=(x-3)^{2}+2\right)$ but do not allow just $y=\ldots$ or $\mathrm{f}^{-1}: y=$ Also accept other equivalent expressions such as $\mathrm{f}^{-1}(x)=x^{2}-6 x+11$ (simplified or unsimplified)

B1ft: $\quad x>3$? or follow through on their part (a). The omission of $x \in \square$ is condoned.
Allow equivalent answers such as $x \in(" 3 ", \infty)$ or $\quad\{x: x>" 3 "\}$
Note: It is also acceptable to define f^{-1} in any variable e.g. as $\mathrm{f}^{-1}(t)=(t-3)^{2}+2 \quad t>3$.as long as the variable is used consistently to score M1A1B1. If another variable is used other than x it must be fully defined e.g. $\mathrm{f}^{-1}(t)=\ldots$ not just $\mathrm{f}^{-1}=\ldots$
(c)

M1: Substitutes $x=6$ into f and substitutes the result into g to find a value for gf (6).
Allow an attempt to substitute $x=6$ into $\operatorname{gf}(x)=\frac{15}{\sqrt{x-2}}$ condoning slips. They must proceed to find a value. Condone arithmetical slips and bracket errors/omissions. Condone for M1 attempts where when dealing with $\sqrt{x-2}$ leads to two different answers e.g. $\frac{15}{\sqrt{6-2}} \rightarrow \pm \frac{15}{2}$
A1: $\frac{15}{2}$ only oe isw once a correct answer is seen

M1: Attempts to form the equation $3+\sqrt{a^{2}+2-2}=\frac{15}{a-3}$, and proceeds to a quadratic in a (usually $a^{2}=k$ or $a^{2}-k=15$ but condone arithmetical, miscopying and sign slips. Condone equations which would lead to complex roots.
May be implied by a correct exact answer.
Alternatively, they attempt to form the equation $a^{2}+2=\mathrm{f}^{-1} \mathrm{~g}(a) \Rightarrow a^{2}+2=\left(\frac{15}{a-3}-3\right)^{2}+2$ $\Rightarrow(a+3)(a-3)=15 \Rightarrow a^{2}-9=15$ (condone slips)

They should be square rooting both sides so that $\sqrt{a^{2}+2-2} \rightarrow a$, before multiplying both sides by $a-3$ and rearranging so that the a^{2} term comes from their " $(a+3)(a-3)$ "

May be implied by a correct exact answer for their quadratic in a but a correct decimal answer does not imply this mark.
A1: $\quad(a=) 2 \sqrt{6}$ or accept $\sqrt{24}$ (they must reject the negative solution if found as $\mathrm{f}\left(a^{2}+2\right) \neq \mathrm{g}(a)$ when $a=-2 \sqrt{6}$) $\sqrt{6} \times \sqrt{4}$ is A0
isw $\sqrt{24}$ followed by $4 \sqrt{6}$ (incorrect manipulation of the surd) but not followed by $\pm \sqrt{24}$ o.e. A decimal answer on its own or multiple answers e.g. $\pm \sqrt{24}$ score A0.

