Question	Scheme	Marks	AOs
8(a)	$O C \times 2.3=27.6$	M1	1.1b
	e.g. $O C=\frac{27.6}{2.3}=12 \mathrm{~m}$ *	A1*	2.1
		(2)	
(b)	e.g. $(2 A O B=) \pi-2.3$	M1	1.1b
	$\frac{\pi-2.3}{2} \Rightarrow 0.421 \mathrm{rad} *$	A1*	2.1
		(2)	
(c)	Area $O C D E=\frac{1}{2} \times 12^{2} \times 2.3$	M1	1.1b
	$=165.6\left(\mathrm{~m}^{2}\right)$ (accept awrt 166)	A1	1.1b
	$(O B=) \frac{35-27.6}{2}+12=15.7 \mathrm{~m}$	B1	2.1
	Area of $O A B($ or $O F G)=\frac{1}{2} \times 15.7 \mathrm{P} \times 7.5 \times \sin 0.421 \quad\left(=24.0 \ldots \mathrm{~m}^{2}\right)$	M1	1.1b
	Total area $=165.6+2 \times 124.1$ "	dM1	3.1a
	$=\mathrm{awrt} 214\left(\mathrm{~m}^{2}\right)$	A1	1.1 b
		(6)	

(10 marks)

Notes

(a)

M1: Uses $l=r \theta$ with $l=27.6$ and $\theta=2.3$ correctly substituted in (may be labelled differently in their equation). Values just need to be embedded in an equation or accept an expression for $O C$ e.g. $\frac{27.6}{2.3}$. May work in degrees which is acceptable.
Condone an alternative letter being used to denote $O C$ such as r
Alternatively, they use $l=r \theta$ with $r=12$ and $\theta=2.3$ and verify that $l=27.6 \mathrm{~m}$
A1*: Achieves an expression for $O C$ before proceeding to $O C=12(\mathrm{~m})$ with no errors seen (condone lack of units)
They must show at least $\frac{27.6}{2.3} \Rightarrow O C=12(\mathrm{~m})$ which can score M1A1*
$r=\frac{27.6}{2.3}=12$ is M1A1* (condone alternative letters for $O C$)
BUT e.g. $\frac{27.6}{2.3}=12(\mathrm{~m})$ on its own is M1A0*
e.g. $O C \times 2.3=27.6 \Rightarrow O C=12(\mathrm{~m})$ is $\mathrm{M} 1 \mathrm{~A} 0^{*}$

In the alternative method they verify $l=27.6$ and conclude that $O C=12 \mathrm{~m}$
We must see the calculation $12 \times 2.3=27.6$ and conclude that $O C=12(\mathrm{~m})$
e.g. $\operatorname{arc}=12 \times 2.3=27.6$ so $O C=12(\mathrm{~m})$ is $\mathrm{M} 1 \mathrm{~A} 1^{*}$ whereas $12 \times 2.3=27.6$ is M1A0*

Also allow e.g. if $O C=12(\mathrm{~m})$ then $12 \times 2.3=27.6 \checkmark$ is M1A1*
If they work in degrees and use rounded values this scores $A 0^{*}$ (If they work with e.g. $\frac{414}{\pi}$ to keep the angle exact then $\mathrm{A} 1 *$ can still be scored)

(b)

M1: Attempts to subtract 2.3 from π (which may be implied by an expression for $A O B$ which is not the given answer)
e.g. $\frac{1}{2}(\pi-2.3)$ or $\frac{\pi}{2}-1.15$ score M1

May work in degrees e.g. 180 - awrt132 is M1
Condone invisible brackets e.g. $\pi-2.3 \div 2$ can still score M1.
$\mathrm{A} 1^{*}$: Achieves 0.421 (rad) with no errors seen (ignore any side working which is not part of their main solution). Look for a correct expression which is awrt 0.421 before proceeding to the answer. Alternatively, they may write
e.g $2 A O B=\pi-2.3(=0.8415 ..) \Rightarrow A O B=0.421$

Condone if they do not round their answer at the end to 0.421 .
Condone lack of units. Condone poor labelling of other angles and it does not require $A O B=$ to score this mark, but do not accept e.g. $A B O=$
If they work in degrees then withhold this mark if they do not show the conversion back to radians.
e.g. $\frac{\pi-2.3}{2}=0.421(\mathrm{rad})$ is M1A1*
e.g. $\frac{180-\text { awrt } 131.8}{2} \div \frac{180}{\pi}=0.421(\mathrm{rad})$ is M1A1 $*$ (conversion from degrees to radians seen)
e.g. $\pi-2.3 \div 2=0.421(\mathrm{rad})$ is M1A0* (invisible/lack of brackets)
e.g. $\pi-2.3=\frac{0.842 \ldots}{2}=0.421 \mathrm{M} 1 \mathrm{~A} 0 *$ (incorrect joined statement)
(c)

M1: Attempts to use $A=\frac{1}{2} r^{2} \theta$ with $r=12$ and $\theta=2.3$ The values embedded in the formula is sufficient for this mark. May be implied by a correct answer or further work. Look out for alternative more complex ways to find the area of the sector. e.g. area of semicircle - area of two sectors with $r=12$ and $\theta=0.421$

A1: awrt 166 (may be implied by later work)
B1: A correct expression or value for the length $O B$ or $O F$ which may be a part of a calculation (may see 15.7 in the equation to find the area of $A O B$)

M1: Attempts to find the area of at least one of the two congruent triangles using their $O B$ found from $\frac{35-27.6}{2}+12(=15.7), O A=7.5$ and $\theta=0.421$ in $\frac{1}{2} \times O A \times O B \times \sin C$ (may work in degrees)
Be aware that omitting sine in the formula may give a value close to the area of the triangle which would be M0. Condone use of $\theta=0.4$ or $\theta=0.42$ if they have rounded angle $A O B$.

The values embedded in the expression is sufficient to score the mark or may be implied by the value.

Look out for more complex methods to find the area of one or both of the two congruent triangles

e.g. they may split the congruent triangle into two right angled triangles and add the separate areas.

Other alternatives

e.g. finding the area of the trapezium $A B F G$:
$B F=2 \times 15.7 \cos 0.421$
Area of $A O B=\frac{1}{2}\left(\left(\frac{15+2 \times 15.7 \cos 0.421}{2}\right) \times 15.7 \sin 0.421-\frac{1}{2} \times 15.7^{2} \times \sin 2.3\right)$ o.e.
e.g. finding the length $A B$ and either angle $O A B$ or angle $A B O$:

$$
\begin{aligned}
& A B^{2}=15.7^{2}+7.5^{2}-2 \times 15.7 \times 7.5 \times \cos 0.421 \Rightarrow A B=9.37 \ldots \\
& \frac{\sin A B O}{7.5}=\frac{\sin 0.421}{9.37 \ldots} \Rightarrow A B O=0.333 \ldots
\end{aligned} \quad \text { or } \frac{\sin O A B}{15.7}=\frac{\sin 0.421}{9.37 \ldots} \Rightarrow O A B=2.41
$$

Approximate values are shown below for some of the lengths you may see in calculations:

dM1: Solves the problem by combining appropriate areas together which result in the total area of the concert stage (usually the sum of the areas of the two congruent triangles and the area of the sector).
It is dependent on the previous method marks and the B mark.
A1: awrt $214\left(\mathrm{~m}^{2}\right)$ (condone lack of units). Must follow from a correct method. Isw if they round incorrectly.

