Question	Scheme	Marks	AOs
13(a)	$a=60$	B1	3.1b
	$2=$ " 60 " $-b(-20)^{2} \Rightarrow b=\ldots$	M1	3.4
	$H=60-0.145(t-20)^{2}$	A1	3.3
		(3)	
(b)	Height $=2 \mathrm{~m}$	B1	3.4
		(1)	
(c)	$\alpha=180$ or $\beta=31$	M1	3.4
	$H=29 \cos (9 t+180)^{\circ}+31$	A1	3.3
		(2)	
(d)	e.g. "The model allows for more than one circuit"	B1	3.5a
		(1)	

Notes

(a)

B 1: $a=60$ (may be seen in their final equation of the model or implied by 60 substituted for a in the model)
M1: Attempts to find b by substituting in $t=0, H=2$ and their a and proceeding to a value for b.
May be seen as two simultaneous equations formed:
$2=a-b(-20)^{2}$ and $60=a-b(20-20)^{2}$ proceeding to a value for b
A1: $\quad H=60-0.145(t-20)^{2}$ or equivalent such as $H=-\frac{29}{200} t^{2}+5.8 t+2$ or $H=60-\frac{29}{200}(t-20)^{2}$ isw once a correct equation for the model is seen. Must be in terms of H and t. If they just state $a=60, b=0.145$ then A0
A correct answer with no working seen scores full marks.
(b)

B1: 2 cao (condone lack of units) This can be scored even if their model in (a) is incorrect (they may have used symmetry to determine this value)
(c)

M1: $\quad(\alpha=) 180$ or $(\beta=) 31$ Condone $(\alpha=) \pi$
A1: $\quad H=29 \cos (9 t+180)^{\circ}+31$ or equivalent e.g. $H=-29 \cos (9 t)+31$ isw once a correct equation for the model is seen. Must be in terms of H and t. If they just state $\alpha=180, \beta=31$ then A0.
A correct equation with no working seen scores both marks. Does not require the degree symbol.
(d)

B1: Score for a reason which makes reference to any of

- the alternative model allows repetition (allow phrases e.g. "multiple cycles", "repeated circuits", "cyclical", "periodic", "loops around", "the original model can only go up and down once")
- the alternative model after 2 minutes the carriage will be back at the start (e.g."at $2 \mathrm{mins}, H=2$ ")
- the original/quadratic model after 40 seconds (or any time after this) will be negative (e.g. "the height will be negative which cannot happen")
- the original model after 2 minutes would not be back at the start

Do not allow vague responses on their own e.g. "the original model is a parabola"
If calculations are used then they must be correct using a correct model (allow rounded or truncated) Look for a valid reason and ignore reference to anything else as long as it does not contradict

t	0	5	10	15	20	25	30	35	40	45	50	55	60	80	100	120
h	2	27	46	56	60	56	46	27	2	-31	-71	-118	-172	-462	-868	-1390

