Question	Scheme	Marks	AOs
3(a)	$\cos\left(\frac{\theta}{2}\right) \to 1 - \frac{\left(\frac{\theta}{2}\right)^2}{2} \text{ or } \sin\theta \to \theta$	M1	1.1b
	$1 - \frac{\left(\frac{\theta}{2}\right)^2}{2} + 4\theta - \theta^2 = \frac{5}{4}$	dM1	1.1b
	$1 - \frac{\theta^2}{8} + 4\theta - \theta^2 = \frac{5}{4}$ $9\theta^2 - 32\theta + 2 \approx 0*$	A1*	2.1
		(3)	
(b)	θ = 0.0636 is a valid solution but θ = 3.49 is not a valid solution as it is not small.	B1	2.3
		(1)	
(4 marks)			
Notes:			
(a) M1: Attempts either $\cos\left(\frac{\theta}{2}\right) \to 1 - \frac{\left(\frac{\theta}{2}\right)^2}{2}$ or $\sin\theta \to \theta$ o.e. Condone missing brackets on the $\frac{\theta}{2}$ so $\cos\left(\frac{\theta}{2}\right) \to 1 - \frac{\frac{\theta}{2}}{2}$ would score the method mark. dM1: Attempts to use both $\cos\left(\frac{\theta}{2}\right) \to 1 - \frac{\left(\frac{\theta}{2}\right)^2}{2}$ and $\sin\theta \to \theta$ o.e. in the given equation. A1*: Achieves $9\theta^2 - 32\theta + 2 \approx 0$ with no errors. Accept $9\theta^2 - 32\theta + 2 = 0$			
There must be a correct intermediate equation where the brackets have been expanded before the given answer, such as $1 - \frac{\theta^2}{8} + 4\theta - \theta^2 = \frac{5}{4}$			
(b) B1: Requires both: • $\theta = 0.0636$ is a valid solution as it is small, • $\theta = 3.49$ is not a valid solution as it is not small.			