Question	Scheme	Marks	AOs
11(a)	Midpoint = (8,0) or $m = \frac{-1-1}{11-5} \left\{ = -\frac{1}{3} \right\}$	B1	1.1b
	y - "0" = "3"(x - "8")	M1	1.1b
	y = 3x - 24	A1	1.1b
		(3)	
(b)	$3x - 24 = -\frac{1}{2}x + \frac{1}{2} \Longrightarrow x = \{7\}$	M1	3.1a
	$y = 3 \times "7" - 24 = \{-3\}$	dM1	1.1b
	(7, -3)*	A1*	2.1
		(3)	
(c)	e.g. $(5-7)^2 + (1+3)^2 = r^2$ leading to $r^2 = \{20\}$	M1	1.1b
	$(x-7)^{2} + (y+3)^{2} = 20$	A1	1.1b
		(2)	
(d)	<i>PR</i> : $y = 2x - 9$	B1	2.2a
	$(x-7)^{2} + ("2x-9"+3)^{2} = 20$	M1	3.1a
	$5x^{2}-38x+65=0$ $(5x-13)(x-5)=0$ $\Rightarrow x = \dots$	dM1	1.1b
	$x = \frac{13}{5}$	A1	2.2a
	$\left(\frac{13}{5}, -\frac{19}{5}\right)$	A1	1.1b
		(5)	
	(13 mar)		

Notes:

(a)

B1: Finds either the midpoint or a correct expression for the gradient of PQ

B1: $y - y_1 = -\frac{1}{m_{PQ}}(x - x_1)$ with an attempt at the midpoint (must not be *P* or *Q*) and the negative reciprocal of their $m = "-\frac{1}{3}"$

If y = mx + c is used they must proceed as far as c = ...

B1: y = 3x - 24 only

(b)

M1: Substitutes their answer to (a) into the given equation: $"3x - 24" = -\frac{1}{2}x + \frac{1}{2}$ and solves to find

a value for *x*

dM1: Attempts to find a value for *y* using this value for *x* in either equation.

A1*: (7, -3) cso

(c)

M1: Attempts to find the radius of the circle or r^2 by substituting either (5,1) or (11,-1) into

$$(x-7)^2 + (y+3)^2 = r^2$$
 leading to $r^2 = \dots$ or $r = \dots \left\{ = \sqrt{20} \text{ or } 2\sqrt{5} \right\}$

A1:
$$(x-7)^2 + (y+3)^2 = 20$$
 o.e.

(**d**)

B1: Correct equation for *PR* using y-1=2(x-5)

If y = mx + c is used they must get to y = 2x - 9 o.e.

M1: Substitutes their y = 2x - 9 into their circle equation, i.e., $(x - 7^{*})^{2} + (2x - 9^{*} + 3^{*})^{2} = 20^{*}$ and attempts to expand.

dM1: Attempts to form a 3TQ, set = 0 and solve for *x*.

A1: Deduces $x = \frac{13}{5}$ (or rejects x = 5, which may be rejected later on as coordinates) A1: Fully correct work leading to $\left(\frac{13}{5}, -\frac{19}{5}\right)$ o.e. e.g. (2.6, -3.8) (and (5,1) rejected if seen)