Question	Scheme	Marks	AOs
13(a)	Attempts $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4\cos\left(t - \frac{\pi}{4}\right)}{\sec^2 t}$	M1 A1	1.1b 1.1b
		(2)	
(b)(i)	Solves $\cos\left(t - \frac{\pi}{4}\right) = 0$ leading to $t = \dots$	M1	1.1b
	$x = \tan \frac{3\pi}{4} = -1$ or $x = \tan \frac{7\pi}{4} = -1*$	A1*	2.1
(b)(ii)	Both $(-1, 4)$ and $(-1, -4)$	A1	1.1b
		(3)	
(c)(i)	$y = 4\sin\left(t - \frac{\pi}{4}\right) = 4\left(\sin t \cos\frac{\pi}{4} - \sin\frac{\pi}{4}\cos t\right)$	M1	1.1b
	$=4\left(x\cos t\cos\frac{\pi}{4}-\sin\frac{\pi}{4}\cos t\right)$	dM1	3.1a
	$y = \frac{2\sqrt{2}(x-1)}{\sec t} *$	A1*	2.1
(c)(ii)	Squares $y^2 = \frac{k(x-1)^2}{\sec^2 t}$ and uses $\tan^2 t + 1 = \sec^2 t$	M1	3.1a
	$y^2 = \frac{8(x-1)^2}{x^2+1}$	A1	2.1
		(5)	
	(10 marks)		

Notes:

(a)

M1: Attempts
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

There must be some attempt to differentiate both parameters however poor and divide the right way round.

A1: $\frac{dy}{dx} = \frac{4\cos\left(t - \frac{\pi}{4}\right)}{\sec^2 t}$ Correct expression in any form. May be implied. (b) M1: Sets their $\frac{dy}{dt} = 0$ and solves for t

A1*: cso Attempts $x = \tan t$ for at least one of their correct values of t and achieves x = -1

Requires $\frac{dy}{dt}$ to be correct. Note that the correct values of t are $t = \frac{3\pi}{4}$ and $t = \frac{7\pi}{4}$ {accept e.g. $\frac{11\pi}{4}$ or $-\frac{\pi}{4}$ } A1: Both (-1, 4) and (-1, -4)(c)(i) **M1:** Attempts the addition formulae $\sin\left(t - \frac{\pi}{4}\right) = \sin t \cos \frac{\pi}{4} - \sin \frac{\pi}{4} \cos t$, condoning a sign slip. **dM1:** Uses $\tan t = \frac{\sin t}{2}$ to write $\sin t = x \cos t$ or equivalent A1*: Arrives at $y = \frac{2\sqrt{2}(x-1)}{x-1}$ following correct work sin t must be replaced by $x\cos t$ or $\frac{x}{\sec t}$ before the final line. (c)(ii) M1: Attempts to square the given answer to (c) $y^2 = \frac{k(x-1)^2}{x^2 + 1}$ and attempts to use $\pm \tan^2 t \pm 1 = \pm \sec^2 t$ A1: $y^2 = \frac{8(x-1)^2}{x^2+1}$