C

13.

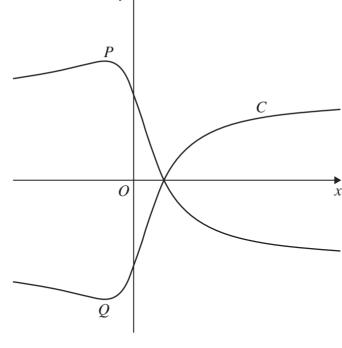


Figure 7

Figure 7 shows a sketch of part of the curve C with parametric equations

$$x = \tan t \quad y = 4\sin\left(t - \frac{\pi}{4}\right) \qquad 0 \leqslant t < 2\pi$$

(a) Using parametric differentiation, find an expression for
$$\frac{dy}{dx}$$

Given that
$$C$$
 has a maximum turning point at P and a minimum turning point at Q

(b) (i) show that the
$$x$$
 coordinate of both P and Q is -1

(ii) Hence find the coordinates of P and Q

(c) (i) Show that
$$y = \frac{2\sqrt{2}(x-1)}{\sec t}$$

(ii) Hence or otherwise, find a Cartesian equation for C in the form $y^2 = f(x)$

$$y = I(\lambda)$$

(2)

(3)

(5)