Questio	Scheme	Marks	AUS				
1	1 $g(3) = 3(3)^3 - 20(3)^2 + 3(k+17) + k = 0$		3.1a				
	$4k - 48 = 0 \Longrightarrow k = \dots$	M1	1.1b				
	${k = }12$	A1	1.1b				
		(3)					
(3 marks)							
	Notes						
Note: Ignore any use of $f(x)$ in place of $g(x)$ throughout.							
M1:	A1: Attempts $g(3) = 0$ to set up a linear equation in k. The = 0 may implied by their value of k.						

Expect to see 3 substituted for x at least twice but condone minor slips copying the function. May be scored for e.g. 81 - 180 + 3(k + 17) + k = 0Missing brackets may be recovered.

Attempting g(-3) = 0 scores M0 but note that the second M1 is available.

If algebraic division is attempted, they need to achieve a linear remainder in k only and set =0 Condone slips in their calculations.

As a minimum, expect to see $3x^2 + \lambda x$, $\lambda \neq 0$ as their quotient **leading to a linear** remainder in k only set = 0 (the = 0 may be implied by their value for k).

For reference, the correct division is

$$3x^{2} - 11x + k - 16$$

$$x - 3\overline{\smash{\big)}}3x^{3} - 20x^{2} + (k + 17)x + k$$

$$\underline{3x^{3} - 9x^{2}} - 11x^{2} + (k + 17)x + k$$

$$\underline{-11x^{2} + 33x} - (k - 16)x + k$$

$$\underline{(k - 16)x - 3k + 48} - 4k - 48 = 0$$

You may also see variations on the table below.

Here, the M1 is scored when the sum of both coefficients of x are equated to (k + 17)

	$3x^2$	-11x	$-\frac{k}{3}$	
x	3 <i>x</i> ³	$-11x^{2}$	$-\frac{k}{3}x$	
-3	$-9x^{2}$	33 <i>x</i>	k	$33 - \frac{k}{3} = k + 17 \text{ scores M1}$

M1: Scored for attempting to solve a linear equation in k having attempted g (±3) = 0 Do not be concerned about the process, e.g. -81+180-3(k+17)+k=0→k=... scores M1. Via division they must have a linear remainder in k set = 0 The = 0 may be implied by their value for k in all approaches.
A1: Obtains {k = }12 only. Do not accept e.g. 48/4 Allow slips in working to be recovered. Condone e.g. x = 12 provided it has come from a linear equation in k. Note that e.g. 3(3)³ - 20(3)² + 3(k+17) + k {= 0} → k = 12 and

 $81-180+3k+51+k = 0 \rightarrow k = 12$ are sufficient to imply M1M1A1.