Quest	ion	Scheme	Marks	AOs
4		$\frac{(x+h)^2 - x^2}{h} = \frac{x^2 + 2xh + h^2 - x^2}{h}$ $= \frac{2xh + h^2}{h}$ $\frac{dy}{dx} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x+h) = 2x^*$	M1	2.1
		$=\frac{2xh+h^2}{h}$	A1	1.1b
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x^*$	A1*	2.5
			(3)	
(3 marks)				
Notes				
Note:	e: Throughout the question allow use of δx for <i>h</i> or any other letter e.g. α if used consistently. If δx is used then you can condone e.g. $\delta^2 x$ for δx^2 as well as condoning e.g. poorly formed δ 's			
M1:	Begins the process by writing down the gradient of the chord and attempts to expand the			
	correct squared bracket – you can condone "poor" squaring e.g. $(x+h)^2 = x^2 + h^2$ but the $-x^2$			
A1:	must be present. Reaches a correct fraction o.e. with the x^2 terms cancelled out and with no algebraic errors,			
A1.				
	e.g. $\frac{\chi^2 + 2xh + h^2 - \chi^2}{h}$, $2x + h$ is correct.			
A1*:	Completes the process by applying a limiting argument and deduces that $\frac{dy}{dx} = 2x$ with no			
	errors seen. They must have = $2x$ and not just $\lim_{h\to 0} 2x$ to complete the proof.			
	$\frac{dy}{dx}$ = or an equivalent e.g. f'(x) = or "Gradient =" must be evident somewhere in			
	their working or final line. If $f'(x)$ is used then there is no requirement to see $f(x)$ defined			
	first. Condone e.g. $\frac{dy}{dx} \rightarrow 2x$ or $f'(x) \rightarrow 2x$.			
	Condone missing brackets to allow e.g. $\frac{dy}{dx} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + h = 2x$			
	Do not allow $h = 0$ if there is never a reference to $h \rightarrow 0$.			
	e.g. $\frac{dy}{dx} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + 0 = 2x$ is acceptable			
	but e.g. $\frac{dy}{dx} = \frac{2xh + h^2}{h} = 2x + 0 = 2x$ is not unless $h \to 0$ is seen.			
	The $h \rightarrow 0$ does not need to be present throughout the proof e.g. appear on every line but must appear at least once.			
	They must reach $2x + h$ at the end and not $\frac{2xh + h^2}{h}$ (without the <i>h</i> 's cancelled) to complete			
	the limiting argument.			