Question	Scheme	Marks	AOs
9(a)	$\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}} \Longrightarrow \frac{3^{2(7-2k)}}{3^{4k-5}} = \frac{3^{2(k-1)}}{3^{2(7-2k)}}$	M 1	3.1a
	$ (3^{2(7-2k)})^2 = 3^{4k-5} \times 3^{2(k-1)} $ $ \Rightarrow 28 - 8k = 6k - 7 \Rightarrow k = \dots $ $ 3^{2(7-2k)-(4k-5)} = 3^{2(k-1)-2(7-2k)} $ $ \Rightarrow 19 - 8k = 6k - 16 \Rightarrow k = \dots $	dM1	1.1b
	$k = \frac{5}{2}*$	A1*	2.1
		(3)	
(b)	$a = 3^{4(2.5)-5}$ and $r = \frac{9^{7-2(2.5)}}{3^{4(2.5)-5}} \Longrightarrow$ one of $a = 243$ or $r = \frac{1}{3}$	M1	2.2a
	$S_{\infty} = \frac{a}{1-r} = \frac{"243"}{1-"\frac{1}{3}"}$	M1	1.1b
	$S_{\infty} = \frac{729}{2} (364.5)$ cao	A1	1.1b
		(3)	
(6 marks)			
Notes			

(a) **Special cases:**

SC 1: For those that verify rather than prove a SC 100 is awarded for substituting $k = \frac{5}{2}$ into all three terms to correctly obtain 243, 81 and 27 with a statement that this is <u>geometric</u> with $r = \frac{1}{3}$ (or equivalent reason). All statements must be correct.

SC 2: Be aware that e.g. $\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}} \Longrightarrow 81^{2(7-2k)} = 9^{6k-7}$ is an incorrect process (without

some indication that they have intentionally squared both sides) that fortuitously leads to the correct answer and may score maximum SC 010.

- M1: Uses the 3 terms to set up an equation in k and
 - either reaches a common base by replacing 9 with 3^2 or by replacing 3 with $9^{0.5}$ and uses the power law of indices correctly
 - or uses the laws of indices correctly to reach $9^{14-4k} = 3^{6k-7}$ condoning slips in e.g. expanding brackets.

Writing down e.g. 2(7-2k)-(4k-5) = 2(k-1)-2(7-2k) is sufficient to imply the M1.

- **dM1:** Correct processing leading to a value for *k*.
- A1*: Correct value following correct working. Allow k = 2.5 in place of $k = \frac{5}{2}$

Condone missing/invisible brackets provided they are recovered correctly.

Alt 1 Using Base 9:

$$\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}} \Longrightarrow \frac{9^{7-2k}}{9^{2k-2.5}} = \frac{9^{k-1}}{9^{7-2k}} \text{ o.e. scores M1}$$

$$\Rightarrow 9^{9.5-4k} = 9^{3k-8} \Rightarrow 9.5 - 4k = 3k - 8 \Rightarrow 7k = 17.5 \Rightarrow k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct.

Alt 2 Finding *r* in terms of *k* and using e.g.
$$u_3 = ar^2$$
:

$$r = \frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(7-2k)}}{3^{4k-5}} \left\{ = 3^{19-8k} \right\} \text{ or } r = \frac{3^{2(k-1)}}{9^{7-2k}} = \frac{3^{2k-2}}{3^{2(7-2k)}} \left\{ = 3^{6k-16} \right\}$$

$$\Rightarrow 3^{4k-5} \times \left(3^{19-8k}\right)^2 = 3^{2k-2} \text{ or } \Rightarrow 3^{4k-5} \times \left(3^{6k-16}\right)^2 = 3^{2k-2} \text{ scores M1}$$

$$\Rightarrow 3^{4k-5} \times 3^{2(19-8k)} = 3^{2k-2} \Rightarrow 33-12k = 2k-2 \Rightarrow 14k = 35 \Rightarrow k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct.

Alt 3 Using Logs Way 1:

$$\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}} \implies (9^{7-2k})^2 = 3^{6k-7} \implies 9^{14-4k} = 3^{6k-7} \text{ scores M1}$$
$$\implies (14-4k)\log_3 9 = 6k-7$$
$$\implies 2(14-4k) = 6k-7$$
$$\implies k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct.

Alt 4 Using Logs Way 2:

$$\frac{9^{7-2k}}{3^{4k-5}} = \frac{3^{2(k-1)}}{9^{7-2k}}$$

$$\Rightarrow (7-2k)\log_3 9 - (4k-5)\log_3 3 = (2k-2)\log_3 3 - (7-2k)\log_3 9 \text{ scores M1}$$

$$\Rightarrow 2(7-2k) - (4k-5) = 2k - 2 - 2(7-2k)$$

$$\Rightarrow 19 - 8k = 6k - 16$$

$$\Rightarrow k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct.

Alt 5 Recognising that taking log₃ forms an Arithmetic Sequence:

$$\{\log_3\}u_1 = 4k - 5, \ \{\log_3\}u_2 = 2(7 - 2k), \ \{\log_3\}u_3 = 2(k - 1) \\ \Rightarrow 2(7 - 2k) - (4k - 5) = 2(k - 1) - 2(7 - 2k) \quad \text{scores M1} \\ \Rightarrow 19 - 8k = 6k - 16 \\ \Rightarrow k = 2.5$$

Score dM1 when a value of k is achieved using a correct process and A1* if fully correct. There is no need to see any mention of log in this approach.

(b)

M1: Deduces expressions for the first term and the common ratio using $k = \frac{5}{2}$ in the <u>correct</u>

<u>formulae</u> and finds at least one of a = 243 or $r = \frac{1}{3}$. Allow if seen in (a). May be implied by

correct values for *a* and *r*. For reference, $a = 3^{4(2.5)-5}$ and $r = \frac{9^{7-2(2.5)}}{3^{4(2.5)-5}} \left\{ \text{or } r = \frac{3^{2(2.5-1)}}{9^{7-2(2.5)}} \right\}$

M1: Recalls the sum to infinity formula and substitutes their values for *a* and *r* provided |r| < 1Dependent on a correct attempt to find both *a* and *r* using k = 2.5 but allow if neither value is correct or if they are unprocessed e.g. $\frac{3^{4(2.5)-5}}{1-\frac{9^{7-2(2.5)}}{3^{4(2.5)-5}}}$ scores this mark.

A1: cao. Correct sum to infinity. Answer only (with no working) scores full marks. Apply isw.