Questio	on Scheme	Marks	AOs	
10(a)	$8(4) - 4^{\frac{5}{2}} = 32 - 32 = 0$	B1	1.1b	
		(1)		
(b)	$8 - \frac{5}{2}x^{\frac{3}{2}}$	B1	1.1b	
	$x = 4 \Longrightarrow \left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 8 - \frac{5}{2} \times 8 = -12$ $\Rightarrow y \left\{-0\right\} = "-12"(x-4)$	M1	1.1b	
	12x + y = 48 *	A1*	1.1b	
		(3)		
(c)	Attempts to find one of the coordinates of the point of intersection $y = 8x$, $12x + y = 48 \Rightarrow y = 19.2$ (or $x = 2.4$)	M1	1.1b	
	Triangle area is $\frac{1}{2} \times 4 \times "19.2" \left(= 38.4 \text{ or } \frac{192}{5} \right)$ or $\int_{0}^{"2.4"} 8x dx + \int_{"2.4"}^{4} "(48 - 12x)" dx$	dM1	3.1a	
	$\int \left(8x - x^{\frac{5}{2}}\right) dx = 4x^2 - \frac{2}{7}x^{\frac{7}{2}}$	B1	1.1b	
	$A = 38.4 - \left[\left[\left[4x^2 - \frac{2}{7}x^{\frac{7}{2}} \right]_0^4 \right] = 38.4 - 64 + \frac{256}{7} $	ddM1	3.1a	
	$=\frac{384}{35}$	A1	1.1b	
		(5)		
(9 marks)				
Notes				
(a) B1: Substitutes $x = 4$ into the equation of the curve and verifies that $y = 0$. Accept " $8(4) - 4^{\frac{5}{2}} = 0$ "				
	$\frac{5}{2}$			
A	Alternatively, sets $8x - x^2 = 0$ and solves with correct processing to achieve $x = 4$.			
As a minimum accept e.g. $8x - x^{\overline{2}} = 0 \implies x^{\overline{2}} = 8 \implies \{x = \}$ 4 which may follow factorisation.				
(b) du				
B1: C	Correct differentiation. The $\frac{dy}{dx}$ = need not be present.			
M1: C	Correct method for finding the equation of the tangent at $A(4, 0)$.			
R	Requires substitution of $x = 4$ into their $\frac{dy}{dx}$ and an attempt at the equation of the line using this			
gradient. If using $y - y_1 = m(x - x_1)$ then condone the omission of the -0.				
If	If $y = mx + c$ is used they must proceed as far as $c =$			
Accept $\frac{dy}{dx} = -12$ or $m = -12$ without explicit substitution of $x = 4$ provided $8 - \frac{5}{2}x^{\frac{3}{2}}$ is seen.				

- A1*: Correct work leading to the given equation having scored B1M1. Condone y+12x=48 and apply isw once seen. Do not condone 12x+y-48=0 (unless a correct equation = 48 is seen).
- (c) Note: Condone poor notation such as missing dx or spurious $\int f(x) dx$ symbols throughout.
- M1: Attempts to find either the x or y coordinate of the intersection of line l_1 and line l_2 You may need to check the diagram or limits to their integrals.

dM1: Correct method for the area of the triangle. e.g. Triangle area is $\frac{1}{2} \times 4 \times "19.2" \left(= 38.4 \text{ or } \frac{192}{5}\right)$

If integration is attempted then condone slips in their rearrangement of 12x + y = 48 to y = 48 - 12x and note that their integrals do need not to be evaluated, so for example

look for
$$\int_{0}^{\frac{1}{2}.4^{n}} 8x \, dx + \int_{\frac{1}{2}.4^{n}}^{4} (48 - 12x)^{n} \, dx \qquad \left\{ = \frac{576}{25} + \frac{384}{25} = 23.04 + 15.36 \right\}$$

B1: Correct integration of **curve** ignoring limits, i.e. $4x^2 - \frac{2}{7}x^{\frac{7}{2}}$ but condone e.g. $\frac{8x^{1+1}}{2} - \frac{x^{\frac{3}{2}+1}}{\frac{7}{2}}$

ddM1: Fully correct strategy including substitution which would lead to an **exact** area. Does not need to reach a value. Dependent on both previous M marks.

Implied by
$$38.4 - \frac{192}{7}$$
 or a correct final answer $\frac{384}{35}$

Note that the decimal approximation that might be seen is 10.97142857 and implies ddM0 unless there is evidence of substitution (which need not be evaluated).

A1: Correct exact value. Either $\frac{384}{35}$ or $10\frac{34}{35}$

Alternative using lines – curve:

- M1: Attempts to find either the x or y coordinate of the intersection of line l_1 and line l_2 You may need to check the diagram or limits to their integrals.
- **dM1:** Correct method for at least one part (0 to "2.4" or "2.4" to 4) of the area of *R* including limits. Condone slips in their rearrangement of 12x + y = 48 to y = 48 - 12x and note that their integrals do need not to be evaluated, so for example

look for
$$\int_{0}^{2.4^{\circ}} 8x - \left(8x - x^{\frac{5}{2}}\right) dx$$
 or $\int_{2.4^{\circ}}^{4^{\circ}} (48 - 12x)'' - \left(8x - x^{\frac{5}{2}}\right) dx$ (or a sum of both)

B1: Correct integration of **both** regions ignoring limits. May be completed as a sum or separately.

Condone e.g. $\frac{x^{\frac{5}{2}+1}}{\frac{7}{2}}$ in place of $\frac{2}{7}x^{\frac{7}{2}}$ Note that each integral may have been simplified.

$$\int_{-\infty}^{\infty} x^{\frac{5}{2}} dx \text{ and } \{+\} \int_{-\infty}^{\infty} 48 - 20x + x^{\frac{5}{2}} dx \rightarrow \left[\frac{2}{7}x^{\frac{7}{2}}\right]_{-\infty}^{\infty} \text{ and } \{+\} \left[48x - 10x^{2} + \frac{2}{7}x^{\frac{7}{2}}\right]_{-\infty}^{\infty}$$

ddM1: Fully correct strategy including substitution which would lead to an exact area.

Does not need to reach a value. Dependent on both previous M marks.

This approach requires:

- substitution of 0, their 2.4 and 4 in the correct places
- the $\frac{2}{7}(2.4)^{\frac{7}{2}} \frac{2}{7}(2.4)^{\frac{7}{2}}$ to be cancelled (may be implied by a correct final answer $\frac{384}{35}$)

Note that the decimal approximation that might be seen is 10.97142857 and implies ddM0 unless there is evidence that the $\frac{2}{7}(2.4)^{\frac{7}{2}} - \frac{2}{7}(2.4)^{\frac{7}{2}}$ has been cancelled e.g. 6.118... - 6.118...

