Question	Scheme	Marks	AOs	
12(a)	K = 500	B1	1.1b	
	$\tan \alpha = \frac{480}{140} \Longrightarrow \alpha = \dots$	M1	1.1b	
	$\alpha = \text{awrt } 73.74^{\circ} \text{ or } 500 \cos(\theta + 73.74)^{\circ}$	A1	1.1b	
		(3)		
(b)(i)	$R = 1000 + 500\cos(30t + 73.74)^{\circ}$			
	or $R = 1000 + 140\cos(30t)^\circ - 480\sin(30t)^\circ$	B1ft	3.3	
(b)(ii)	$\{R_{\min}=\}500$	B1ft	3.4	
		(2)		
(c)	$t = 3.5 \Rightarrow R = "1000" + "500" \cos(30(3.5) + "73.74")^{\circ} =$	M1	3.4	
	R = awrt 500.1so the model is reliable	A1	3.5a	
		(2)		
(d)	$\sin(30t+70)^\circ = -1 \Longrightarrow 30t + 70 = 270 \Longrightarrow 30t = \dots \text{ (or } t = \dots)$	M1	3.4	
	$30t = 200 \left(\text{or } t = \frac{20}{3} \right)$	A1	1.1b	
	$R = "1000" + "500" \cos\left(30\left("\frac{20}{3}"\right) + "73.74"\right)^{\circ}$ or $R = "1000" + 140 \cos("200")^{\circ} - 480 \sin("200")^{\circ}$	dM1	3.4	
	R = 1032 (or 1033)	A1	1.1b	
		(4)		
(11 marks)				
Notes Note: Candidates working in radians are able to score all the M and B marks in this question. Condone the absence of the degrees symbol throughout the whole question.				
(a) B1: Correct value for <i>K</i> . Condone $R = 500$				
M1: Award for $\tan \alpha = \pm \frac{480}{140} \Rightarrow \alpha = \dots$, $\tan \alpha = \pm \frac{140}{480} \Rightarrow \alpha = \dots$, $\sin \alpha = \pm \frac{480}{500''} \Rightarrow \alpha = \dots$ or				
$\cos \alpha = \pm \frac{140}{500''} \Longrightarrow \alpha = \dots$				
Note $\alpha = awrt 1.3$ (rad) implies this mark.				
	$\alpha = \text{awrt } 73.74\{^\circ\} \text{ or correct expression } 500\cos(\theta + 73.74)\{^\circ\}$			
(b)(i) Note: B1ft: Corre nume	Note: mark parts (b)(i) and (b)(ii) together. Correct equation of the model in either form including the R = following through on their numerical K (0 < K , 750) and their numerical α . Allow for e.g. $R = 1500 - "500" + "500" \cos(30t + "73.74") \{^\circ\}$ or for			
	$R = 1500 - "500" + 140\cos(30t)^{\circ} - 480\sin(30t)^{\circ} \text{ but not e.g. } R = 1500 - K + K\cos(30t + \alpha)^{\circ}$ $R = 1000 + 140\cos(30t) - 480\sin(30t)^{\circ} \text{ but not e.g. } R = 1500 - K + K\cos(30t + \alpha)^{\circ}$			
	$R = 1000 + 140 \cos 30t - 480 \sin 30t$ (without the brackets) is correct. Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.)			

(b)(ii) B1ft: 500 or follow through on (their A – their K) or $(1500 - 2 \times \text{their } K)$ provided it is non-negative and less than 1500. It must be clear this is their answer to (b)(ii) so expect to see e.g. (b) or R_{\min} = or an indication it is the minimum. Note: if θ is used in place of 30t then they must revert back to 30t correctly to access the (c) marks. M1: Substitutes t = 3.5 into their model for the number of rabbits (you may need to check if no method is shown) or substitutes t = 3.5 into their $\cos(30t + \alpha)^{\circ}$ Condone substitution of a value of t in the range 3, t, 4.5 for this mark. R =awrt 500.1... or 500 (not awrt) following substitution of t = 3.5, suggesting that the A1: model is valid/reliable/appropriate/good. or $\cos(30(3.5) + 73.74) \{\circ\} \approx -1$ suggesting that the model is valid/reliable/appropriate/good. Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.) Alt: Minimum occurs when $A + K \cos(30t + \alpha)^\circ = R_{\min} \Longrightarrow \cos(30t + \alpha)^\circ = \lambda$ with $|\lambda|_{\infty}$, 1 **M1:** leading to $t = \dots$ May just see $\cos(30t+73.74)^\circ = -1 \Rightarrow t = ...$ (or their $\cos(30t+\alpha)^\circ = -1 \Rightarrow t = ...$) $30t + \alpha = 180 \Rightarrow t = ...$ implies this mark. Condone $30t + \alpha = \pi \Rightarrow t = ...$ for this mark. A1: t = 3.54... (i.e. the middle of April) so the model is valid/reliable/appropriate/good. Do not condone incorrect statements, e.g., t = 3.54... i.e. the middle of March so close to middle of April. If using $A + K \cos(30t + \alpha)^\circ = R_{\min}$ then R_{\min} must be = their A - their K Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.) Alt 2 using differentiation (Condoned) Condone finding the minimum using $...sin(30t+73.74)^\circ = 0 \Rightarrow t = ...$ (or their **M1:** $\sin(30t+\alpha)^\circ = 0 \Longrightarrow t = ...)$ $30t + \alpha = 180 \Longrightarrow t = \dots$ implies this mark. Condone $30t + \alpha = \pi \Longrightarrow t = \dots$ for this mark. A1: t = 3.54... (i.e. the middle of April) suggesting that the model is valid/reliable/appropriate. Do not condone incorrect statements, e.g., t = 3.54... i.e. the middle of March so close to middle of April. The complete derivative for $\frac{dR}{dt}$ does not need to be seen. Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.) (d) Note: if θ is used in place of 30t then they must revert back to 30t correctly to access the marks. Realises that $\sin(30t+70)^\circ = -1$, reaches 30t+70 = 270 or -90 and attempts to find t (or 30t) **M1:**

Condone attempts using differentiation. The minimum occurs when $\cos(30t+70)^\circ = 0 \Rightarrow 30t+70 = 270 \Rightarrow 30t = ...$ (or t = ...). They must use 270 or -90 and **not** 90 to achieve the minimum. Condone $30t + \alpha = \frac{3\pi}{2} \Rightarrow t = ...$ for this mark but not $30t + \alpha = \frac{\pi}{2} \Rightarrow t = ...$

- A1: Correct value for 30*t* (or *t*) Accept rounded or truncated values to at least 3s.f. e.g. 6.66 or 6.67
- **dM1:** Substitutes their value of t > 0 (or 30t > 0) coming from 30t + 70 = 270 into their model for *R*
- A1: Correct number of rabbits. Allow 1032 or 1033 but must be whole numbers and not just 1030. Allow this mark if they have truncated or rounded an otherwise correct α (to 3s.f.)