Quest	tion	Scheme	Marks	AOs			
2 (a	1)	(i) Centre $\left(-3,4\right)$	B1	1.1b			
		(ii) States or implies that $r^2 = 24$ or $r = \sqrt{24}$	M1	1.1b			
		$2\sqrt{6}$	A1	1.1b			
			(3)				
(b)		Attempts a valid method e.g. Finds distance of centre from origin, Sets $y = 0$ and finds values of x	M1	3.1a			
		Correct calculations, reason and conclusion (see notes)	A1	2.4			
			(2)				
(5 marks)							
Notes:							
Mark (i) and (ii) together (a)(i)							
B1:	Centre $(-3, 4)$ Accept without brackets. May be written e.g. $x = -3$, $y = 4$						
(a)(ii)							
M1:	States	States or implies that $r^2 = 24$ or $r = \sqrt{24}$. A final answer of $\sqrt{24}$ or $2\sqrt{6}$ implies the radius					
	May 1	May multiply out the brackets, collect terms ($x^2 + y^2 + 6x - 8y + 1 = 0$) and states the					
	radius	radius is $r^2 = \frac{6^2}{4} + \frac{(-8)^2}{4} - 1$ o.e. Do not condone slips for this mark.					
A1:	$2\sqrt{6}$ isw if they proceed to write as a decimal						
(b)	Note that if their radius is incorrect in (a) then maximum score is M1A0 unless they restart in (b)						
M1:	Attempts a valid method. For example						
	• Finds the distance (or distance ²) of the centre from the origin.						
	,	They must be attempting $(d =) \sqrt{(\pm "3")^2 + ("\pm "4")^2} =$ or					
		$(d^2 =)(\pm "3"-0)^2 + (\pm "4"-0)^2 =$ and proceed to a value.					
	May be seen as substituting the coordinates of the origin into the equation for <i>C</i> proceeding to a value for the left hand side e.g. 25 (to be able to compare with 24) • Sets $y = 0$ and attempts to solve $(x+3)^2 + (-4)^2 = 24 \Rightarrow x =$ (at least one value)						
	 Sets y = 0 and attempts to solve (x+3) + (-4) = 24 ⇒ x = (at least one value) Sets x = 0 and attempts to solve (3)² + (y-4)² = 24 ⇒ y = (at least one value) 						
	In each method the starting expression or equation must be correct but do not be concerned by slips when evaluating or processing in finding the distance, the <i>x</i> coordinate or <i>y</i>						

coordinate.

$\left(\begin{array}{c} 1 \\ 1 \end{array} \right)$ 25	25 > 24 o.e.		
e.g. $\left(d^2 = \right) 25$			
or	or		
e.g. $(d =) 5$	$5 > \sqrt{24}$ o.e. (allow 4.9 or		
(->2 (->2	better)		
e.g. $(x+3)^2 + (-4)^2 = 24$	roots are both negative (same	e.g. origin does NOT lie within circle / origin lies outside	
$\Rightarrow (x=)-3\pm\sqrt{8}$			
(allow decimals awrt –0.2 and	signs) o.e.	circle / not in circle o.e.	
awrt -5.8)			
e.g. $(3)^2 + (y-4)^2 = 24$			
\Rightarrow $(y =) 4 \pm \sqrt{15}$	roots are both positive (same		
(allow decimals awrt 0.1 and	signs) o.e.		
awrt 7.9)			

Reason examples

Conclusion examples

Correct calculation(s), reason and conclusion examples:

25 > 24 - -

A1:

Calculation examples

but allow referencing to "the radius of C" provided their radius in (a) was correct. Note if they give a reason that the origin does not lie inside the circle C because e.g. $25 \neq 24$ this scores M1A0 (M1 for 25 but A0 incorrect reasoning)

Note if their reasoning is incorrect e.g. referring to the radius as 24 instead of $\sqrt{24}$ then A0