	$\binom{n-1}{2}$ o.e.	111	1.10	
		(2)		
(b)	Deduces the value of " d " = -5	B1 ft	2.2a	
	$S_{50} = \frac{50}{2} \left(2 \times "15" + 49 \times " - 5" \right)$	M1	1.1b	
	= - 5375	A1	1.1b	
		(3)		
			(5 marks)	
Notes:				
(a) Condone using other letters for a and d (e.g. may use r for d)				
M1:	Attempts a valid method to solve the problem			
	• Uses the common difference to form a correct equation and a a value for <i>k</i>	ttempts to s	olve to find	
	e.g. Attempts to solve $10-6k = 2k-10$ o.e such as $2k-6k = 2k-10$	=2(10-6k))	
	• Uses 10 as the mean of $2k$ and $6k$: $\frac{2k+6k}{2} = 10 \Rightarrow k =$			
	• Sets up correct equations $a = 6k$, $a + d = 10$ and $a + 2d = 2k$. 6k + d = 10 and $10 + d = 2k$, and proceeds to find k .	k, or may b	e seen as	
	• Uses the summation formula $S_3 = \frac{3}{2}(6k + 2k) = 6k + 10 + 2k$	and proceed	ds to find k	
	In each attempt the initial equation (or simultaneous equations) must be correct but do not			
	be concerned by the mechanics of the rearrangement to find k. May be implied by $k = \frac{5}{2}$			
A1:	$\left(k=\right)\frac{5}{2}$ o.e.			
(b)	Work seen in (a) can only be scored if seen or used in (b)			
B1ft:	Common difference = -5 or ft on their value for k (even if k has been found from an			
	incorrect method) e.g. $10-6 \times \frac{5}{2}$ or e.g. $2 \times \frac{5}{2} - 10$ if only a numerical value is seen.			

Attempts to solve $10-6k = 2k-10 \Rightarrow k = ...$

 $(k=)\frac{5}{2}$ o.e.

M1

A1

3.1a

1.1b

Question

3 (a)

May be implied or seen in a term or summation formula. Note that some candidates may work in terms of k throughout so only allow B1ft to be scored when they substitute in their numerical value for k, following 10-6k o.e. correctly embedded in a correct formula. They may make arithmetical slips before they substitute in their numerical value for k which can be condoned.

M1: Attempts to use a **correct formula**. The expression is sufficient to score this mark but they must be using a correct value for a and $\pm d$ (or ft on their value for k for a and d) which are correctly placed in the formula. e.g. $\left(S_{50} = \frac{50}{2} \left(2 \times 6k + 49 \times \pm d \right)\right)$.

Alternatively, they may find the 50th term
$$u_{50} = "15" + (50-1) \times "-5" = -230$$
 and use

 $\left(S_{50} = \frac{50}{2} \left(15'' + -230'' \right).\right)$

If working in terms of
$$k$$
 they must substitute in their value for k

e.g.
$$\left(S_{50} = \frac{50}{2} \left(2 \times 6k + 49 \times (10 - 6k)\right) = -7050k + 12250 = -7050 \times \frac{5}{2} + 12250\right)$$

e.g.
$$\frac{50}{2} \left(2 \times 15 + \left(49 \right) - 5 \right)$$
 scores M1

e.g.
$$\frac{30}{2}$$
 2

- 5375 cao A1: