(b)		Attempts to show that their $2x^2 - 5x + 4$ does not have any (real) roots	M1	3.1a				
		Correct calculations, reason and conclusion	A1	2.1				
			(2)					
				(5 marks)				
Notes:								
(a) B1: States or uses $a = 4$ e.g. may be seen in their attempt at dividing algebraically by $x + 4$								
M1:	M1: Attempts to divide f (x) by $(x+4)$ to find a three-term quadratic $Q(x)$. There are various methods or ways to present their solution so typically methods • by inspection look for $2x^3 + 3x^2 - 16x + 16 = (x+4)(2x^2 +x \pm 4)$							
	• by division look for a quadratic quotient of $2x^2 - 5x \pm$							
A1:	: $(x+4)(2x^2-5x+4)$ condone the missing trailing bracket i.e. $(x+4)(2x^2-5x+4)$ is wif they attempt to factorise their quadratic factor.							
	Allow to be scored if seen in (b).							
(b)								
M1: Attempts to show that their three-term quadratic " $2x^2 - 5x + 4$ " does not have any roots:								
	Attempts the discriminant							
e.g. $b^2 - 4ac = 25 - 4 \times 2 \times 4 = -7$ (may be embedded in the quadratic formula)								
Attempts to use the quadratic formula								
e.g. $(x =)$ $\frac{5 \pm \sqrt{(-5)^2 - 4 \times 2 \times 4}}{4}$ but do not allow directly from a calculator $\frac{5 \pm \sqrt{7}i}{4}$								
Attempts to complete the square								
e.g. $2x^2 - 5x + 4 = 2\left(x^2 - \frac{5}{2}x\right) + 4 = 2\left(x - \frac{5}{4}\right)^2 + \dots$ $\left(=2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 4\right)$								
• Uses calculus to find the turning point								
e.g. $\frac{d(2x^2 - 5x + 4)}{dx} = 4x - 5 = 0 \Rightarrow x = \frac{5}{4} \Rightarrow y =$								

Note that any attempts using the discriminant or quadratic formula must have the values

embedded in the correct places (may be partially evaluated) to score M1

 $(x+4)(2x^2-5x+4)$

B1

M1

A1

(3)

1.1a

2.1

1.1b

4 (a)

States or uses a = 4

Valid method to find Q(x)

Fully correct argument that requires:

Dependent on a correct $Q(x) = 2x^2 - 5x + 4$

Correct work

• Fully correct work

- A justification depending on strategy and no incorrect reasoning seen
- A conclusion
- Examples below Note we must see working before they proceed to a correct root or

A1:

minimum value – see M1 for guidance

Justification

Strategy	Correct work	Justification	Conclusion examples	
	examples	examples	-	
Via discriminant	$b^2 - 4ac = -7$	-7 < 0 -7 so no (real) roots but NOT $-7 \neq 0$ so no roots		
Via using the quadratic formula	$x = \frac{5 \pm \sqrt{7}i}{4} \text{ or}$ $x = \frac{5 \pm \sqrt{-7}}{4}$	-7 < 0 / which is not possible / complex roots o.e. / cannot square root a negative / no (real) roots		
Via completing the	$2\left(x-\frac{5}{4}\right)^2+\frac{7}{8}$ or	which has a minimum value of $\frac{7}{8}$ / minimum (of the positive quadratic) is above the <i>x</i> -axis	so "-4 is the only (real) root" / "only one (real) root"	
square	$2\left(x - \frac{5}{4}\right)^2 + \frac{7}{8} = 0 \Rightarrow$ $2\left(x - \frac{5}{4}\right)^2 = -\frac{7}{8}$	$-\frac{7}{8} < 0$ / cannot square root a negative / no (real) roots		
Via calculus	$x = \frac{5}{4} \Rightarrow y = \frac{7}{8}$	which has a minimum value of $\frac{7}{8}$ / minimum (of the positive quadratic) is above the <i>x</i> -axis		

Note that it is possible to justify and conclude in one step by using phrases e.g. "no more (real) roots" or "no other (real) roots"

e.g. $2x^2 - 5x + 4 \Rightarrow b^2 - 4ac = 25 - 32 = -7$ so no more roots which scores M1A1

Condone 25-32<0 as a justification that the quadratic has no real roots

Condone the conclusion -4 is the only (real) solution (instead of (real) root).

Note if (x+4) is described as a root or -4 is described as a factor this scores A0