	= 2	A1cso	1.1b
		(2)	
			(3 marks)
Notes:			
Mark (a) and (b) together			
(a)			
B1:	States that $\int_{1.44}^{2.89} \frac{2}{\sqrt{x}} dx$ or equivalent such as $2 \int_{1.44}^{2.89} x^{-\frac{1}{2}} dx$ or $2 \int_{1.44}^{2.89} x^{-0.5} dx$ but must		
	include the limits and the dx. Condone $dx \leftrightarrow \delta x$ as it is very difficult to tell one from another sometimes.		
(b)			
M1:	Uses $\int \frac{1}{\sqrt{x}} dx = a\sqrt{x}$ or $ax^{\frac{1}{2}}$ (allow <i>a</i> to be 1) and applies the given limits to their		
	$ax^{\frac{1}{2}}$ subtracting either way round. (Condone with the constant of integration included) You do not need to be concerned by fractions within fractions as this is still of the		
	required form e.g. $\frac{2x^{\frac{1}{2}}}{\frac{1}{2}}$. Only condone transcription errors of 2.89 or 1.44 when		

 $= \left[4\sqrt{x}\right]_{1.44}^{2.89} = 4 \times 1.7 - 4 \times 1.2$

B1

(1)

M1

1.2

1.1b

 $\lim_{\delta x \to 0} \sum_{x \to 0}^{2.89} \frac{2}{\sqrt{x}} \, \delta x = \int_{0.14}^{2.89} \frac{2}{\sqrt{x}} \, \mathrm{d}x$

Question 5 (a)

(b)

e.g. $\left[4\sqrt{x}\right]_{1.44}^{2.89} = 4 \times \sqrt{2.89} - 4 \times \sqrt{1.44} \text{ or e.g. } \frac{2x^{\frac{1}{2}}}{\frac{1}{2}} \to \frac{2(2.89)^{\frac{1}{2}} - 2(1.44)^{\frac{1}{2}}}{\frac{1}{2}}$

substituting the limits into the expression.

This mark can be scored for

May already be partially evaluated so allow e.g. $\frac{34}{5} - \frac{24}{5}$ o.e. provided it is not just 2.

A1: 2 cso

A1: 2 cso
The method mark must have been awarded. Do not withhold this mark for poor notation or e.g. a missing dx in their solution.