Question	Scheme	Marks	AOs
7 (a)	Either $x \le -1$ or $2 \le x \le 5$	M1	2.2a
	Both $\{x: x \in \mathbb{R}, x \le -1\} \cup \{x: x \in \mathbb{R}, 2 \le x \le 5\}$ o.e.	A1	2.5
		(2)	
(b)	States $(y =) \alpha (x+1)^2 (x-5)^2$ or $(f(x) =) \alpha (x+1)^2 (x-5)^2$	M1	1.1b
	Substitutes $(0,-75)$ into $y = \alpha (x+1)^2 (x-5)^2$ and attempts to find the value for α	dM1	3.1a
	$y = -3(x+1)^2(x-5)^2$ o.e.	A1	2.1
		(3)	
(c)	Substitutes $x = 2$ into their $y = -3(x+1)^2(x-5)^2 \Rightarrow y = (-243)$	M1	2.1
	0 < <i>k</i> < 243	A1ft	1.1b
		(2)	
(7 marks)			
Notes:			
(a) M1: Either • $x \le -1$ o.e. e.g. $-1 \ge x$ • $2 \le x \le 5$ o.e. but condone use of strict inequalities anywhere for this mark. e.g. $2 < x < 5$ or $2 < x \le 5$ or $2 \le x < 5$ May also write e.g. $x < 5$ and $x > 2$ which scores M1 but not " $x < 5$ or $x > 2$ " Allow interval notation such as e.g. [2,5] or $(-\infty, -1]$ or condone e.g. (2,5) Ignore incorrect inequality statements not related to the one which is valid. e.g. " $2 \le x < 5$ and $x > -1$ " which scores M1 for the first inequality. A1: Requires { } and \cup			

M1: Forms the equation of the form
$$(y =) \alpha (x+1)^2 (x-5)^2$$
. Condone $\alpha = 1$
Award for sight of $\alpha (x+1)^2 (x-5)^2$ even with $\alpha = 1$ i.e. $(x+1)^2 (x-5)^2$
dM1: Substitutes $(0,-75)$ into the form $y = \alpha (x+1)^2 (x-5)^2$ and attempts to find the value for α . It is dependent on the previous method mark.

A correct expression but missing e.g. y = ... or f(x) = ... scores M1dM1A0

A1:
$$y = -3(x+1)^2 (x-5)^2$$
 o.e. (e.g. $y = -3x^4 + 24x^3 - 18x^2 - 120x - 75$) isw after a correct answer. Condone $f(x) = -3(x+1)^2 (x-5)^2$ but not

(b)

 $C = -3(x+1)^2(x-5)^2$

A correct equation scores all 3 marks. Allow if seen in (c) isw if they attempt to multiply out.

Note a correct equation written down scores all 3 marks.

Alternative I part (b):

Using the form $y = ax^4 + bx^3 + cx^2 + dx + e$, then setting up and solving simultaneous

equations.

There are various versions of this but can be marked similarly.

Sets e equal to -75 (may just be seen in their equation) and forms three correct different M1:

equations in a, b, c and d which may be unsimplified.

Note that the form $y = ax^4 + bx^3 + cx^2 + dx + e$ is M0 until e is set equal to -75 There are 5 equations that can be formed, only 3 are necessary for this mark.

Do not condone slips. $\Rightarrow 0 = a - b + c - d - 75$ o.e. Using (-1,0)

 \Rightarrow 0 = 625a + 125b + 25c + 5d - 75 o.e. Using (5,0)Using $\frac{dy}{dx} = 0$ at x = 2 \Rightarrow 0 = 32a + 12b + 4c + d o.e.

Using $\frac{dy}{dx} = 0$ at x = -1 $\Rightarrow 0 = -4a + 3b - 2c + d \text{ o.e.}$ Using $\frac{dy}{dx} = 0$ at x = 5 \Rightarrow 0 = 500a + 75b + 10c + d o.e.

Using
$$\frac{dy}{dx} = 0$$
 at $x = 5$ $\Rightarrow 0 = 500a + 75b + 10c + d$ o.e.
dM1: Forms **four correct** different equations and solves to find values for a , b , c and

Forms **four correct** different equations and solves to find values for a, b, c and d. You do not need to be concerned by the process of solving. A calculator can be used to solve

the equations. $y = -3x^4 + 24x^3 - 18x^2 - 120x - 75$ o.e. isw if they attempt to factorise but withhold this A1:

mark if they e.g. divide all terms by 3. Condone f(x) = ... but not $C = \dots$ A correct equation scores all 3 marks. Allow if seen in (c)

Alternative II part (b): Uses the form
$$y = (x+1)(x-5)(ax^2+bx+c)$$

M1: Substitutes $x = 0$, $y = -75$ $-75 = -5c \Rightarrow c = 15$, multiplies out, differentiates

$$\Rightarrow \frac{dy}{dx} = (2x - 4)(ax^2 + bx + 15) + (x^2 - 4x - 5)(2ax + b)$$
and forms a correct equation in a and b which may be unsimplified

and forms **a correct equation** in *a* and *b* which may be unsimplified.

Using
$$\frac{dy}{dx} = 0$$
 at $x = 2$ $\Rightarrow 0 = 4a + b$ o.e.

Using
$$\frac{dy}{dx} = 0$$
 at $x = -1$ $\Rightarrow 0 = a - b + 15$

Using
$$\frac{dy}{dx} = 0$$
 at $x = -1$ $\Rightarrow 0 = a - b + 15$ o.e.
Using $\frac{dy}{dx} = 0$ at $x = 5$ $\Rightarrow 0 = 5a + b + 3 = 0$ o.e.

Using
$$\frac{dy}{dx} = 0$$
 at $x = 5$ $\Rightarrow 0 = 5a + b + 3 = 0$
dM1: Forms **two correct** different equations and solves to

need to be concerned by the process of solving. A calculator can be used to solve the equations.

A1:
$$y = (x+1)(x-5)(-3x^2+12x+15)$$
 o.e. isw if they attempt to multiply out or factorise

1:
$$y = (x+1)(x-5)(-3x^2+12x+15)$$
 o.e. isw if they attempt to multiply out or factorise
Condone $f(x) = ...$ but not $C = ...$ but withhold this mark if they e.g. divide all terms
by 3. A correct equation scores all 3 marks. Allow if seen in (c)

Alternative III part (b): Uses
$$\frac{dy}{dx} = \beta(x+1)(x-2)(x-5)$$
 (β may be 1) and integrates.

M1: Integrates
$$\left(\frac{dy}{dx}\right) = \beta(x+1)(x-2)(x-5)$$
 to $(y=)\beta\left(\frac{1}{4}x^4 - 2x^3 + \frac{3}{2}x^2 + 10x + k\right)$ and forms **one correct** equation using either $(0, -75)$: $-75 = \beta k$ (allow $-75 = k$)

Condone f(x) = ... but not

dM1:

A1:

(c)

M1:

A1ft:

answer.

one correct equation using either
$$(0, -75)$$
: $-75 = \beta k$ (allow $-75 = k$)
 $(-1,0)$: $0 = \beta \left(\frac{1}{4} + 2 + \frac{3}{2} - 10 + k\right)$ $(5,0)$: $0 = \beta \left(\frac{625}{4} - 250 + \frac{75}{2} + 50 + k\right)$

$$\frac{-10+}{2}$$
 tion using the need to

for
$$\beta$$
 and k . You do not need to be concerned by the process of solving . A calculator can be used to solve the equations.
$$y = -12\left(\frac{1}{4}x^4 - 2x^3 + \frac{3}{2}x^2 + 10x + \frac{25}{4}\right)$$
 o.e. isw if they attempt to multiply out or factorise

0 < k < 243 o.e. ft on their negative y value at x = 2.

allow OR or \cup . Do not accept $0 \le k \le 243$ o.e.

Forms a different equation using one of
$$(0, -75)$$
, $(-1, 0)$, $(5, 0)$ and solves to find values for 8 and k . You do not need to be concerned by the process of solving. A calculator can

by 3. A correct equation scores all 3 marks. Allow if seen in (c)

proceeds to find a value for y. Sight of their $\pm y$ (or ± 243) scores M1. You may need to check this on your calculator if only a value is seen.

$$k \int (5,0)$$
g one of

Substitutes x = 2 into their $y = -3(x+1)^2(x-5)^2$ (must be a quartic in any form) and

Allow use of set notation, interval notation and allow e.g. k < 243, k > 0 but do not

This mark can only be scored if they have a negative quartic graph function

i.e. $\alpha < 0$ for their $y = \alpha (x+1)^2 (x-5)^2$ or a < 0 for their $y = ax^4 + bx^3 + cx^2 + dx + e$

If there are multiple attempts at describing the region, mark what appears to be their final

$$-75 = \beta R$$
$$0 = \beta \left(-\frac{1}{2} \right)$$

 $C = \dots$ but withhold this mark if they e.g. divide all terms