Question	Scheme	Marks	AOs		
8 (a)	e.g. The last line should start $25k^2 + 20k + 4$	B1	2.3		
		(1)			
(b)	Considers one of the missing calculations				
	$m = 5k + 3$ and attempts $m^2 = (5k + 3)^2 = \dots$	$(k+3)^2 = \dots$			
	or	M1	2.1		
	$m = 5k + 4$ and attempts $m^2 = (5k + 4)^2 = \dots$				
	Achieves one correct statement				
	$m^{2} = (5k+3)^{2} = 25k^{2} + 30k + 9 = 5(5k^{2} + 6k + 2) - 1$				
	or	A1	1.1b		
	$m^{2} = (5k+4)^{2} = 25k^{2} + 40k + 16 = 5(5k^{2} + 8k + 3) + 1$				
	Considers both of the missing calculations	dM1	1.1b		
	Achieves both correct statements with final concluding remark (see notes)	A1	2.1		
		(4)			
		(5	marks)		
Notes:					
the lout a Sighterro If B	rects the error for the case when $m = 5k + 2$. The correction may be box or may be described in the main body of the text. May just see and replaced with $20k$ in the box or described in the main body of that of the quadratic $\left(25k^2\right) + 20k\left(+4\right)$ scores B1 and isw e.g. if they are in the expansion. 1 is not scored in (a) then allow to score if seen correct in (b) e.g. the case $m = 5k + 2$ as part of their proof in (b).	bed in the main body of the text. May just see the $10k$ crossed $0k$ in the box or described in the main body of the work. $(25k^2) + 20k (+4)$ scores B1 and isw e.g. if they make other then allow to score if seen correct in (b) e.g. they may attempt			
If a candida	Main scheme method uses $m = 5k + 3$ and $m = 5k + 4$ You will need to look at both cases and mark the one which is fully correct first. Allow a different variable to k and may be different letters for the two cases. and attempts repeated cases e.g. $m = 5k + 4$ and $m = 5k - 1$ then mark both and award the higher mark of the two. Condone use of m as a variable for the first three marks. The should be no errors in the algebra for the m marks including invisible brackets but do not be concerned with any re-attempt at doing the case $m = 5k + 2$				

Note that we are not expecting candidates to state what set of numbers k belongs to but we will condone pairs such as $m = -5k - 1$ and $m = -5k - 2$ Typically candidates will show the algebraic steps as in the main scheme but for this particular pair they may justify equivalence using the results in the box for $m = 5k + 1$ and $m = 5k + 2$ without requiring calculations which is acceptable.				
M1:	Considers one valid case e.g. $m = 5k + 3$ and attempts $m^2 = (5k + 3)^2$ or $m = 5k + 4$ and			
	attempts $m^2 = (5k+4)^2$			
A1:	Look for expanding out the brackets and simplifying to a 3TQ. Condone slips. Achieves one correct statement which includes the case, the quadratic multiplied out and written in the required form			
	e.g. $m^2 = (5k+3)^2 = 25k^2 + 30k + 9 = 5(5k^2 + 6k + 2) - 1$ or			
	e.g. $m^2 = (5k+4)^2 = 25k^2 + 40k + 16 = 5(5k^2 + 8k + 3) + 1$			

Considers both cases for a valid pair (see first M1 for guidance). It is dependent on the

Full proof with correct statements for both cases for a valid pair. Each must include the case, the quadratic multiplied out and written in the form which is not in terms of m

dM1:

A1:

Note that there are other allowable valid pairs of combinations covering the final two distinct cases e.g. m = 5k - 2 and m = 5k + 4, or m = 5k - 1 and m = 5k + 3 but NOT e.g. m = 5k + 3 and m = 5k - 2

(we do not need the "where n =" at the end of the statements - you can ignore these)

Requires a minimal overall conclusion eg. Proven, QED, tick

Condone recovery of interchanging of variables. $\frac{m}{5k+3} = \frac{m^2}{25k^2+30k+9} = \frac{5n\pm 1}{5(5k^2+6k+2)-1}$ 51. 4. 4. 5 $\frac{2}{5(5k^2+8k+2)+1}$

previous method mark. Condone slips.

m	m ²	5n±1		
5 <i>k</i> +3	$25k^2 + 30k + 9$	$5\left(5k^2+6k+2\right)-1$		
5 <i>k</i> + 4	$25k^2 + 40k + 16$	$5\left(5k^2+8k+3\right)+1$		
5k-1	$25k^2 - 10k + 1$	$5\left(5k^2-2k\right)+1$		
5k-2	$25k^2 - 20k + 4$	$5(5k^2-4k+1)-1$		
Ignore any additional cases that are not required to complete the proof				

(and ignore replications of the ones given in the box in the question)