Quest	ion Scheme	Marks	AOs	
14(a				
	Attempts to use $\cos(x+30^\circ) = \cos x \cos 30^\circ \mp \sin x \sin 30^\circ$	M1	2.1	
	$\Rightarrow \pm \sin x \cos 30^{\circ} \pm \cos x \sin 30^{\circ} \pm \sqrt{3} \left(\pm \cos x \cos 30^{\circ} \pm \sin x \sin 30^{\circ} \right)$			
	Correct expression $\sin x \cos 30^{\circ} + \cos x \sin 30^{\circ} + \sqrt{3} (\cos x \cos 30^{\circ} - \sin x \sin 30^{\circ})$	A1	1.1b	
	States or implies that $\sin 30^\circ = \frac{1}{2}$ and $\cos 30^\circ = \frac{\sqrt{3}}{2}$ $= \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \sqrt{3}\left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right) = 2\cos x *$	A1*	2.1	
		(3)		
(b)	$2\cos\theta = 3\sin 2\theta \Rightarrow 2\cos\theta = 6\sin\theta\cos\theta$	M1	2.1	
	$\sin\theta = \frac{1}{3}$	A1	1.1b	
	$\theta = \arcsin \frac{1}{3} \Rightarrow \theta = \dots$	dM1	1.1b	
	$(\theta =)$ awrt 19.5°, awrt 160.5°, 90°	A1	2.2a	
		(4)		
(7 marks)				
Notes:				
(a) M1:	Condone a complete proof entirely in θ (or another variable) instead of x . Do not be concerned with the omission of degrees. Attempts to use both compound angle expansions to set up an expression in $\sin x$ and $\cos x$ i.e. $\pm \sin x \cos 30^\circ \pm \cos x \sin 30^\circ \pm \sqrt{3} \left(\pm \cos x \cos 30^\circ \pm \sin x \sin 30^\circ\right)$ The terms must be correct but condone sign errors and a slip on the multiplication of the $\sqrt{3}$ if they attempt to multiply out the brackets. (The $\sqrt{3}$ may be omitted entirely) This mark may be implied by further work e.g. $\pm \frac{\sqrt{3}}{2} \sin x \pm \frac{1}{2} \cos x \pm \sqrt{3} \left(\pm \frac{\sqrt{3}}{2} \cos x \pm \frac{1}{2} \sin x\right)$			
A1:				
AI.	May be implied by $\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \sqrt{3}\left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right) \text{ (or implied if multiplied out)}$			
A1*:	Proceeds to the given answer with no errors seen including invisible brackets (condone a missing trailing bracket). We must see the exact numerical values used for $\sin 30^\circ$ and $\cos 30^\circ$ before proceeding to the given answer. Minimum required $\frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x + \sqrt{3}\left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right) = 2\cos x \text{ which scores M1A1A1*}$ singular $\cos 30^\circ$ to $\cos x = 30^\circ$.			
	$\sin x \cos 30^\circ + \cos x \sin 30^\circ + \sqrt{3} (\cos x \cos 30^\circ - \sin x \sin 30^\circ) = 2\cos x$ scores M1A1A0* There should not be any notational or bracketing errors and no mixed or missing variable			

M1: Writes the left hand side of the equation as
$$\frac{1}{2}\sin(x+30^\circ) + \frac{\sqrt{3}}{2}\cos(x+30^\circ) = \sin 30^\circ \text{ si}$$

 $\frac{1}{2}\sin(x+30^\circ) + \frac{\sqrt{3}}{2}\cos(x+30^\circ) = \sin 30^\circ \sin(x+30^\circ) + \cos 30^\circ \cos(x+30^\circ)$

Alternative for part (a)

A1*:

A1: Correct expression for
$$\sin 30^{\circ} \sin(x+30^{\circ}) + \cos 30^{\circ} \cos(x+30^{\circ}) = \cos x$$

A1*: Proceeds to the given answer $\sin(x+30^{\circ}) + \sqrt{3}\cos(x+30^{\circ}) = 2\cos(x+30^{\circ}-30^{\circ}) = 2\cos x$

with **no errors seen including invisible brackets** (condone a missing trailing bracket). There should not be any notational or bracketing errors and no mixed or missing variables.

Alternative part (a) – using the R-alpha method

M1:

States e.g.
$$R\cos(x+30\pm\alpha) = \sqrt{3}\cos(x+30) \mp \sin(x+30)$$

and attempts to find either R or α correctly. (may be implied)

empts to find either
$$R$$
 or α correctly

A1: Achieves $2\cos(x+30-30)$

Achieves
$$2\cos(x+30-30)$$

Achieves $2\cos x$ with no errors seen and both stages of working shown e.g.

States $(R\cos(x+30\pm\alpha)=)\sqrt{3}\cos(x+30)\cos\alpha\mp\sin(x+30)\sin\alpha$ oe

Shows
$$R = \sqrt{1+3} = 2$$
 and $\tan \alpha = \left(\frac{1}{\sqrt{3}}\right)$ o.e. e.g. using cosine or sine

(b) Condone the use of
$$x$$
 for θ and mixed variables

Sets $2\cos\theta = 3\sin 2\theta$ and proceeds to $A\cos\theta = B\sin\theta\cos\theta$. (allow A = B)

ets
$$2\cos\theta = 3\sin 2\theta$$
 and proceeds to A lay be implied by $\sin\theta = k \ (k \neq 0,1)$

M1: May be implied by $\sin \theta = k \ (k \neq 0,1)$

A1:
$$\sin \theta = \frac{1}{3}$$

Finds at least one of their values of θ for their $\sin \theta = k$ ($k \neq 0,1$) It is dependent on the dM1:

(awrt 0.34 or awrt 2.8 in radians)

Answers in radians score A0.

A1:

Deduces that
$$(\theta =) 90^{\circ}$$
 as well as giving $(\theta =)$ awrt19.5°, awrt160.5° with no other values

in the given range (ignore any found outside of the range) The degree symbol is not required. (Note the angles are 19.4712206...and 160.528779...)