Question	Scheme	Marks	AOs	
15 (a)	$\frac{1}{2}r^{2}\theta + \frac{1}{10}r^{2} = 240 \Rightarrow r\theta = \frac{240 - \frac{1}{10}r^{2}}{\frac{1}{2}r} \text{ or } \theta = \frac{240 - \frac{1}{10}r^{2}}{\frac{1}{2}r^{2}}$	M1 A1	3.4 1.1b	
	Substitutes into the expression for P $r\theta = \frac{240 - \frac{1}{10}r^2}{\frac{1}{2}r} \text{ into } (P =) r\theta + 2r + \frac{1}{5}r$	dM1	3.4	
	$P = \frac{240 - \frac{1}{10}r^2}{\frac{1}{2}r} + 2r + \frac{1}{5}r = \frac{480}{r} - \frac{1}{5}r + 2r + \frac{1}{5}r = 2r + \frac{480}{r} *$	A1*	2.1	
		(4)		
(b)	$\left(\frac{\mathrm{d}P}{\mathrm{d}r} = \right) 2 - \frac{480}{r^2}$	M1	1.1b	
	Sets $\frac{dP}{dr} = 0 \Rightarrow r^2 = 240$ r = awrt 15.5	dM1 A1	2.1 1.1b	
		(3)		
(c)	$\left(\frac{\mathrm{d}^2 P}{\mathrm{d}r^2}\right) = \frac{960}{r^3}$	M1	1.1b	
	$\left(\frac{d^2 P}{dr^2}\right) = \text{awrt } 0.26 > 0 \text{ proving a minimum value of } P$	A1	1.1b	
		(2)		
(9 marks)				
Notes:				
(a) Note that just finding a correct equation for the area and/or a correct equation for the perimeter (before any substitution) is insufficient to score any marks.				
M1: Uses area formulae to form an equation of the form $\alpha r^2 \theta + \beta r^2 = 240$ o.e. $(\alpha, \beta \neq 0)$ and				
rearranges to make $r\theta$, θ or $r\theta + \frac{1}{5}r$ the subject. Look for:				
$r\theta = \frac{M \pm Nr^2}{r} \left(= \frac{M}{r} \pm Nr \right)$ o.e. or $\theta = \frac{M \pm Nr^2}{r^2} \left(= \frac{M}{r^2} \pm N \right)$ o.e. where $M, N \neq 0$				
or $r\theta + \frac{1}{5}r = \frac{L}{r}$ $L \neq 0$ o.e. May work in degrees.				
A1: A co	A correct rearrangement for θ or $r\theta + \frac{1}{5}r$ which may be unsimplified (may be in			
	degrees)			
rθ=	$= \frac{240 - \frac{1}{10}r^2}{\frac{1}{2}r} \text{ o.e. e.g. } r\theta = \frac{2400 - r^2}{5r} \text{ or } r\theta = \frac{480 - 0.2r^2}{r}$			
or $r\theta + \frac{1}{5}r = \frac{480}{r}$ o.e.				

marks scored. Condone invisible brackets to be recovered.

$$P = 0$$
, Perimeter = must be seen at least once in their solution in the correct place.

Mark (b) and (c) together. There is no requirement to see the notation $\frac{dP}{dr}$ in part

(b). It may even be called $\frac{dy}{dr}$. Allow use of e.g. P' or e.g. y'

 $\left(\frac{dP}{dr}\right) = p \pm \frac{q}{r^2}$ where p and q are non-zero constants

check this on your calculator.

A1*:

(b)

M1:

or $\theta = \frac{240 - \frac{1}{10}r^2}{\frac{1}{r^2}}$ o.e. e.g. $\theta = \frac{2400 - r^2}{5r^2}$ or $\theta = \frac{480}{r^2} - \frac{1}{5}$ or $\theta = 480r^{-2} - 0.2$

Substitutes their $r\theta = \frac{M \pm Nr^2}{r}$ o.e. or $\theta = \frac{M \pm Nr^2}{r^2}$ o.e. or $r\theta + \frac{1}{5}r = \frac{L}{r}$ into an

expression of the form $(P =) r\theta + Qr$, $Q \neq 0$ (typically $P = r\theta + \frac{11}{5}r$) which may be

for their valid expression for θ , $r\theta$ or $r\theta + \frac{1}{5}r$ to be substituted into the perimeter

expression directly (without first seeing them in the perimeter expression).

unsimplified or in degrees. It is dependent on the previous method mark. It is acceptable

 $P = 2r + \frac{480}{r}$ following a correct method (condone slips to be recovered) and all previous

Sets or implies that their $\frac{dP}{dr} = 0$ and proceeds to $mr^{\pm 2} = n$, $m \times n > 0$. It is dependent on

the previous method mark. Do not be concerned by the mechanics of the rearrangement.

This mark may be implied by a correct answer to their $p - \frac{q}{r^2} = 0$. You may need to

A1: $r = \text{awrt } 15.5 \text{ or } \sqrt{240} \left(= 4\sqrt{15} \right) \text{ Do not accept } \pm \text{ (ignore any units if given)}$ (c) Condone other letters used instead of P and r for $\frac{d^2P}{dr^2}$ e.g. $\frac{d^2y}{dx^2}$ for M1 only.

Just using $\frac{dP}{dr}$ and considering a sign change is M0A0

M1: Differentiates and finds $\left(\frac{d^2P}{dr^2}\right) \pm \frac{f}{r^3}$ (do not be concerned about the sign)
A1: Note if they score A0 in (b) then this mark cannot be scored.

Requires

• a correct a correct expression for $\frac{d^2 P}{dr^2}$ • a correct value for $\left(\frac{d^2 P}{dr^2}\right) = \frac{960}{r^3} = \text{awrt } 0.26 \text{ using awrt } 15.5 \text{ (but allow } 0.23(43...) \text{ if } 15.5 \text{ (but allow } 15.$

it must be $\frac{d^2P}{dr^2}$ o.e. or accept e.g. P'' BUT $\frac{d^2y}{dx^2}$ used in their conclusion is A0

- a correct comparison with 0 and a conclusion e.g. minimum

 The expression for the second derivative does not need to be labelled but if it is then