9.

A racing car is driven along a straight road.

 $v = 15t - te^{0.2t} \qquad 0 \leqslant t \leqslant T$

(2)

(4)

(3)

Figure 2 shows a graph of the speed of the car as it travels along the road.

The car starts from rest and is driven for *T* seconds before stopping.

The speed of the car is modelled by the equation

- According to the model,
- (a) find the value of T, giving your answer to one decimal place,

(b) show that the maximum speed of the car occurs when

$$t = 5 \ln \left(\frac{75}{t+5} \right)$$

Using the iteration formula

$$t_{n+1} = 5 \ln \left(\frac{75}{t_n + 5} \right) \qquad \text{with } t_1 = 8$$

- (c) (i) find the value of t_3 to 3 decimal places,
 - (ii) find, by repeated iteration, the time taken for the car to reach maximum speed.