

rigure 4

Figure 4 shows the plan view for the design of a stage.

The shape of this design consists of a sector of a circle *AOB* joined to a rectangle *OBCD*.

Given that

- the radius of the sector is r metres and angle AOB is θ radians
- the length and width of the rectangle are r metres and $\frac{1}{10}$ r metres respectively
- the total area of the stage is $240 \,\mathrm{m}^2$
- (a) show that the perimeter of the stage, P metres, is given by

$$P = 2r + \frac{480}{r}$$

You must make your method clear.

Using algebraic differentiation,

- (b) find the value of *r* for which *P* has a stationary value.
- (c) Prove, by further differentiation, that this value of *r* gives the minimum perimeter of the stage.

(2)

(3)

(4)