

Figure 5 shows a sketch of the curve C with equation

$$y = \frac{1}{x^2 \sqrt{4 - x^2}} \qquad 0 < x < 2$$

The region R, shown shaded in Figure 5, is bounded by C, the line with equation x = 1, the x-axis and the line with equation $x = \sqrt{3}$

(a) Use the substitution $x = 2 \sin u$ to show that the area of R is given by

$$\int_{a}^{b} k \csc^{2} u \, \mathrm{d}u$$

where a, b and k are constants to be found.

(b) Hence, using algebraic integration, find the exact area of R. Give your answer in simplest form.

(3)

(4)