Ques	tion	5	Scheme	Marks	AOs	
9	9 $\int (3x^{0.5} + A) dx = 2x^{1.5} + Ax(+c)$		M1 A1	3.1a 1.1b		
	Uses limits and sets = $2A^2 \Rightarrow (2 \times 8 + 4A) - (2 \times 1 + A) = 2A^2$		M1	1.1b		
		Sets up quadratic and attempts to solve	Sets up quadratic and attempts $b^2 - 4ac$	M1	1.1b	
		$\Rightarrow A = -2, \frac{7}{2}$ and states that there are two roots	States $b^2 - 4ac = 121 > 0$ and hence there are two roots	A1	2.4	
(5 marks)						
Notes:						
M1:		Integrates the given function and achieves an answer of the form $kx^{1.5} + Ax(+c)$ where k is a non-zero constant				
A1:		Correct answer but may not be simplified				
M1:	Subs	Substitutes in limits and subtracts. This can only be scored if $\int A dx = Ax$ and not $\frac{A^2}{2}$				
M1:	Sets	Sets up quadratic equation in A and either attempts to solve or attempts $b^2 - 4ac$				
A1:	Either $A = -2, \frac{7}{2}$ and states that there are two roots					

Or states $b^2 - 4ac = 121 > 0$ and hence there are two roots