Question	Scheme	Marks	AOs
14(a)	Sets $500 = \pi r^2 h$	B1	2.1
	Substitute $h = \frac{500}{\pi r^2}$ into $S = 2\pi r^2 + 2\pi r h = 2\pi r^2 + 2\pi r \times \frac{500}{\pi r^2}$	M1	2.1
	Simplifies to reach given answer $S = 2\pi r^2 + \frac{1000}{r}$ *	A1*	1.1b
		(3)	
(b)	Differentiates S with both indices correct in $\frac{dS}{dr}$	M1	3.4
	$\frac{\mathrm{d}S}{\mathrm{d}r} = 4\pi r - \frac{1000}{r^2}$	A1	1.1b
	Sets $\frac{dS}{dr} = 0$ and proceeds to $r^3 = k, k$ is a constant	M1	2.1
	Radius = $4.30 \mathrm{cm}$	A1	1.1b
	Substitutes their $r = 4.30$ into $h = \frac{500}{\pi r^2} \Rightarrow$ Height = 8.60 cm	A1	1.1b
		(5)	
(c)	 States a valid reason such as The radius is too big for the size of our hands If r = 4.3 cm and h = 8.6 cm the can is square in profile. All drinks cans are taller than they are wide The radius is too big for us to drink from They have different dimensions to other drinks cans and would be difficult to stack on shelves with other drinks cans 	B1	3.2a
		(1)	
9 marks			
Notes:			
(a) B1: Uses the correct volume formula with $V = 500$. Accept $500 = \pi r^2 h$ M1: Substitutes $h = \frac{500}{\pi r^2}$ or $rh = \frac{500}{\pi r}$ into $S = 2\pi r^2 + 2\pi rh$ to get S as a function of r A1*: $S = 2\pi r^2 + \frac{1000}{r}$ Note that this is a given answer.			
(b)			
M1: Di	Differentiates the given S to reach $\frac{dS}{dr} = Ar \pm Br^{-2}$		
	$\frac{\mathrm{d}S}{\mathrm{d}r} = 4\pi r - \frac{1000}{r^2} \text{ or exact equivalent}$		
M1: Se	Sets $\frac{dS}{dr} = 0$ and proceeds to $r^3 = k, k$ is a constant		
	R = awrt 4.30cm		
	H = awrt 8.60 cm		
(c) B1: Ar	Any valid reason. See scheme for alternatives		