Question	Scheme	Marks	AOs
15	$\frac{dy}{dx} = \frac{15}{2}x^{\frac{1}{2}} - 9$	M1	3.1a
	dx = 2	A1	1.1b
	Substitutes $x = 4 \Longrightarrow \frac{dy}{dx} = 6$	M1	2.1
	Uses (4, 15) and gradient $\Rightarrow y-15=6(x-4)$	M1	2.1
	Equation of <i>l</i> is $y = 6x - 9$	A1	1.1b
	Area $R = \int_0^4 \left(5x^{\frac{3}{2}} - 9x + 11\right) - (6x - 9) dx$	M1	3.1a
	$= \left[2x^{\frac{5}{2}} - \frac{15}{2}x^{2} + 20x(+c)\right]_{0}^{4}$	A1	1.1b
	Uses both limits of 4 and 0		
	$\left[2x^{\frac{5}{2}} - \frac{15}{2}x^{2} + 20x\right]_{0}^{4} = 2 \times 4^{\frac{5}{2}} - \frac{15}{2} \times 4^{2} + 20 \times 4 - 0$	M1	2.1
	Area of $R = 24 *$	A1*	1.1b
	Correct notation with good explanations	A1	2.5
		(10)	
	(10 mark		

Question 15 continued

Notes:

Differentiates $5x^{\frac{3}{2}} - 9x + 11$ to a form $Ax^{\frac{1}{2}} + B$ **M1**: $\frac{dy}{dx} = \frac{15}{2}x^{\frac{1}{2}} - 9$ but may not be simplified A1: Substitutes x = 4 in their $\frac{dy}{dx}$ to find the gradient of the tangent **M1: M1**: Uses their gradient and the point (4, 15) to find the equation of the tangent Equation of *l* is y = 6x - 9A1: Uses Area $R = \int_{0}^{4} \left(5x^{\frac{3}{2}} - 9x + 11\right) - (6x - 9) dx$ following through on their y = 6x - 9M1: Look for a form $Ax^{\frac{5}{2}} + Bx^2 + Cx$ = $\left[2x^{\frac{5}{2}} - \frac{15}{2}x^2 + 20x(+c)\right]^4$ This must be correct but may not be simplified A1: M1: Substitutes in both limits and subtracts A1*: Correct area for R = 24A1: Uses correct notation and produces a well explained and accurate solution. Look for Correct notation used consistently and accurately for both differentiation and • integration Correct explanations in producing the equation of *l*. See scheme. Correct explanation in finding the area of R. In way 2 a diagram may be used. Alternative method for the area using area under curve and triangles. (Way 2) Area under curve = $\int_{-1}^{4} \left(5x^{\frac{3}{2}} - 9x + 11 \right) = \left[Ax^{\frac{5}{2}} + Bx^{2} + Cx \right]^{4}$ **M1:** $= \left| 2x^{\frac{5}{2}} - \frac{9}{2}x^2 + 11x \right|^4 = 36$ A1: **M1**: This requires a full method with all triangles found using a correct method

Look for Area
$$R$$
 = their $36 - \frac{1}{2} \times 15 \times \left(4 - \text{their } \frac{3}{2}\right) + \frac{1}{2} \times \text{their } 9 \times \text{their } \frac{3}{2}$