Question	Scheme	Marks	AOs
16(a)	Sets $\frac{1}{P(11-2P)} = \frac{A}{P} + \frac{B}{(11-2P)}$	B1	1.1a
	Substitutes either $P = 0$ or $P = \frac{11}{2}$ into $1 = A(11-2P) + BP \Rightarrow A \text{ or } B$	M1	1.1b
	$\frac{1}{P(11-2P)} = \frac{\frac{1}{11}}{P} + \frac{\frac{2}{11}}{(11-2P)}$	A1	1.1b
		(3)	
(b)	Separates the variables $\int \frac{22}{P(11-2P)} dP = \int 1 dt$	B1	3.1a
	Uses (a) and attempts to integrate $\int \frac{2}{P} + \frac{4}{(11-2P)} dP = t + c$: M1	1.1b
	$2 \ln P - 2 \ln (11 - 2P) = t + c$: A1	1.1b
	Substitutes $t = 0, P = 1 \Rightarrow t = 0, P = 1 \Rightarrow c = (-2 \ln 9)$	M1	3.1a
	Substitutes $P = 2 \Rightarrow t = 2 \ln 2 + 2 \ln 9 - 2 \ln 7$	M1	3.1a
	Time = 1.89 years	A1	3.2a
		(6)	
(c)	Uses $\ln \text{laws}$ $2 \ln P - 2 \ln (11 - 2P) = t - 2 \ln 9$ $\Rightarrow \ln \left(\frac{9P}{11 - 2P} \right) = \frac{1}{2}t$	M1	2.1
	Makes 'P' the subject $\Rightarrow \left(\frac{9P}{11-2P}\right) = e^{\frac{1}{2}t}$		
	$\Rightarrow 9P = (11 - 2P)e^{\frac{1}{2}t}$ $\Rightarrow P = f\left(e^{\frac{1}{2}t}\right) \text{ or } \Rightarrow P = f\left(e^{-\frac{1}{2}t}\right)$	M1	2.1
	$\Rightarrow P = \frac{11}{2 + 9e^{\frac{-1}{2}t}} \Rightarrow A = 11, B = 2, C = 9$	A1	1.1b
		(3)	
	(12 marks)		

Question 16 continued

Notes:

(a)

B1: Sets
$$\frac{1}{P(11-2P)} = \frac{A}{P} + \frac{B}{(11-2P)}$$

M1: Substitutes P = 0 or $P = \frac{11}{2}$ into $1 = A(11 - 2P) + BP \Rightarrow A$ or B

Alternatively compares terms to set up and solve two simultaneous equations in A and B

A1:
$$\frac{1}{P(11-2P)} = \frac{\frac{1}{11}}{P} + \frac{\frac{2}{11}}{(11-2P)}$$
 or equivalent $\frac{1}{P(11-2P)} = \frac{1}{11P} + \frac{2}{11(11-2P)}$

Note: The correct answer with no working scores all three marks.

(b)

B1: Separates the variables to reach $\int \frac{22}{P(11-2P)} dP = \int 1 dt$ or equivalent

M1: Uses part (a) and $\int \frac{A}{P} + \frac{B}{(11-2P)} dP = A \ln P \pm C \ln(11-2P)$

A1: Integrates both sides to form a correct equation including a 'c' Eg $2 \ln P - 2 \ln (11 - 2P) = t + c$

M1: Substitutes t = 0 and P = 1 to find c

M1: Substitutes P = 2 to find t. This is dependent upon having scored both previous M's

A1: Time = 1.89 years

(c)

M1: Uses correct log laws to move from $2 \ln P - 2 \ln (11 - 2P) = t + c$ to $\ln \left(\frac{P}{11 - 2P} \right) = \frac{1}{2}t + d$ for their numerical 'c'

M1: Uses a correct method to get *P* in terms of $e^{\frac{1}{2}t}$

This can be achieved from $\ln\left(\frac{P}{11-2P}\right) = \frac{1}{2}t + d \Rightarrow \frac{P}{11-2P} = e^{\frac{1}{2}t+d}$ followed by cross multiplication and collection of terms in P (See scheme)

Alternatively uses a correct method to get *P* in terms of $e^{-\frac{1}{2}t}$ For example

$$\frac{P}{11-2P} = e^{\frac{1}{2}t+d} \Rightarrow \frac{11-2P}{P} = e^{-\left(\frac{1}{2}t+d\right)} \Rightarrow \frac{11}{P} - 2 = e^{-\left(\frac{1}{2}t+d\right)} \Rightarrow \frac{11}{P} = 2 + e^{-\left(\frac{1}{2}t+d\right)} \text{ followed by division}$$

A1: Achieves the correct answer in the form required. $P = \frac{11}{2 + 9e^{-\frac{1}{2}t}} \Rightarrow A = 11, B = 2, C = 9$ oe