(b)	$\frac{dp}{dt} \propto p \Rightarrow \frac{dp}{dt} = kp$ $\int \frac{1}{p} dp = \int k dt$ $\ln p = kt \{+c\}$ $\ln p = kt + c \Rightarrow p = e^{kt+c} = e^{kt}e^{c} \Rightarrow p = ae^{kt} *$ $p = ae^{kt} \Rightarrow \ln p = \ln a + kt \text{ and evidence of understanding that either}$ $e \text{ gradient} = k \text{ or } "M" = k$ $e \text{ vertical intercept} = \ln a \text{ or } "C" = \ln a$ $\text{gradient} = k = 0.14$ $\text{vertical intercept} = \ln a = 3.95 \Rightarrow a = e^{3.95} = 51.935 = 52 (2 \text{ sf})$	B1 M1 A1 A1 * (4) M1 A1 A1	3.3 1.1b 1.1b 2.1 2.1 1.1b
(b)	$\ln p = kt \{+c\}$ $\ln p = kt + c \Rightarrow p = e^{kt+c} = e^{kt}e^{c} \Rightarrow p = ae^{kt} *$ $p = ae^{kt} \Rightarrow \ln p = \ln a + kt \text{ and evidence of understanding that either}$ $\text{gradient} = k \text{ or } "M" = k$ $\text{vertical intercept} = \ln a \text{ or } "C" = \ln a$ $\text{gradient} = k = 0.14$	A1 A1 * (4) M1 A1	1.1b 2.1 2.1 1.1b
(b)	$\ln p = kt + c \implies p = e^{kt+c} = e^{kt}e^c \implies p = ae^{kt} *$ $p = ae^{kt} \implies \ln p = \ln a + kt \text{ and evidence of understanding that either}$ $\text{gradient} = k \text{ or } "M" = k$ $\text{vertical intercept} = \ln a \text{ or } "C" = \ln a$ $\text{gradient} = k = 0.14$	A1 * (4) M1 A1	2.1 2.1 1.1b
(b)	$p = ae^{kt} \implies \ln p = \ln a + kt \text{ and evidence of understanding that either}$ • gradient = k or "M" = k • vertical intercept = ln a or "C" = ln a gradient = k = 0.14	(4) M1 A1	2.1 1.1b
٤ ٤ ٧	 gradient = k or "M" = k vertical intercept = ln a or "C" = ln a gradient = k = 0.14 	M1 A1	1.1b
٤ ٤ ٧	 gradient = k or "M" = k vertical intercept = ln a or "C" = ln a gradient = k = 0.14 	A1	1.1b
v	• 		
	vertical intercept = $\ln a = 3.95 \implies a = e^{3.95} = 51.935 = 52 (2 \text{ sf})$	A1	1 11.
(c) ^e			1.1b
(c) ^e		(3)	
1	e.g. • $p = ae^{kt} \Rightarrow p = a(e^k)^t = ab^t$, • $p = 52e^{0.14t} \Rightarrow p = 52(e^{0.14})^t$	B1	2.2a
l	$b = 1.15$ which can be implied by $p = 52(1.15)^{t}$	B1	1.1b
		(2)	
	Initial area (i.e. "52" mm^2) of bacterial culture that was first placed onto the circular dish.	B1	3.4
(d)(ii) E	 E.g. Rate of increase per hour of the area of bacterial culture The area of bacterial culture increases by "15%" each hour 	B1	3.4
		(2)	
	The model predicts that the area of the bacteria culture will increase indefinitely, but the size of the circular dish will be a constraint on this area.	B1	3.5b
		(1)	

Question 7 Notes:		
(a)		
B1:	Translates the scientist's statement regarding proportionality into a differential equation, which	
	involves a constant of proportionality. e.g. $\frac{dp}{dt} \propto p \implies \frac{dp}{dt} = kp$	
M1:	Correct method of separating the variables p and t in their differential equation	
A1:	$\ln p = kt$, with or without a constant of integration	
A1*:	Correct proof with no errors seen in working.	
(b)		
M1:	See scheme	
A1:	Correctly finds $k = 0.14$	
A1:	Correctly finds $a = 52$	
(c)		
B1:	Uses algebra to correctly deduce either	
	• $p = ab^t$ from $p = ae^{kt}$	
	• $p = "52"(e^{"0.14"})^t$ from $p = "52"e^{"0.14"t}$	
B1:	See scheme	
(d)(i)		
B1:	See scheme	
(d)(ii)		
B1:	See scheme	
(e)		
B1:	Gives a correct long-term limitation of the model for <i>p</i> . (See scheme).	