8(a)	$\frac{\mathrm{d} V}{\mathrm{~d} t}=160 \pi, \quad V=\frac{1}{3} \pi h^{2}(75-h)=25 \pi h^{2}-\frac{1}{3} \pi h^{3}$		
	$\frac{\mathrm{d} V}{\mathrm{~d}}=50 \pi h-\pi h^{2}$	M1	1.1b
	$\frac{\mathrm{d} h}{}$	A1	1.1b
	$\left\{\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \Rightarrow\right\}\left(50 \pi h-\pi h^{2}\right) \frac{\mathrm{d} h}{\mathrm{~d} t}=160 \pi$	M1	3.1a
	When $h=10,\left\{\frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \div \frac{\mathrm{d} V}{\mathrm{~d} h} \Rightarrow\right\} \frac{160 \pi}{50 \pi(10)-\pi(10)^{2}}\left\{=\frac{160 \pi}{400 \pi}\right\}$	dM1	3.4
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=0.4\left(\mathrm{cms}^{-1}\right)$	A1	1.1b
		(5)	
(b)	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{300 \pi}{50 \pi(20)-\pi(20)^{2}}$	M1	3.4
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=0.5\left(\mathrm{cms}^{-1}\right)$	A1	1.1b
		(2)	

Question 8 Notes:

(a)

M1: \quad Differentiates V with respect to h to give $\pm \alpha h \pm \beta h^{2}, \alpha \neq 0, \beta \neq 0$
A1: $\quad 50 \pi h-\pi h^{2}$
M1: Attempts to solve the problem by applying a complete method of $\left(\right.$ their $\left.\frac{\mathrm{d} V}{\mathrm{~d} h}\right) \times \frac{\mathrm{d} h}{\mathrm{~d} t}=160 \pi$
M1: Depends on the previous M mark.
Substitutes $h=10$ into their model for $\frac{\mathrm{d} h}{\mathrm{~d} t}$ which is in the form $\frac{160 \pi}{\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} h}\right)}$
A1: \quad Obtains the correct answer 0.4

M1: Realises that rate for of $160 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ for $0, h, h 12$ has no effect when the rate is increased to $300 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ for $12<h, 24$ and so substitutes $h=20$ into their model for $\frac{\mathrm{d} h}{\mathrm{~d} t}$ which is in the form $\frac{300 \pi}{\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} h}\right)}$
A1: Obtains the correct answer 0.5

