Quest	ion Scheme	Marks	AOs
8 (a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 160\pi, \ V = \frac{1}{3}\pi h^2 (75 - h) = 25\pi h^2 - \frac{1}{3}\pi h^3$		
	$dV = 50 - h = -h^2$	M1	1.1b
	$\frac{\mathrm{d}V}{\mathrm{d}h} = 50\pi h - \pi h^2$	Al	1.1b
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Longrightarrow\right\} \left(50\pi h - \pi h^2\right) \frac{\mathrm{d}h}{\mathrm{d}t} = 160\pi$	M1	3.1a
	When $h = 10$, $\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Rightarrow\right\} \frac{160\pi}{50\pi(10) - \pi(10)^2} \left\{=\frac{160\pi}{400\pi}\right\}$	dM1	3.4
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 \ (\mathrm{cms^{-1}})$	A1	1.1b
		(5)	
(b)	$\frac{dh}{dt} = \frac{300\pi}{50\pi(20) - \pi(20)^2}$	M1	3.4
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.5 \ (\mathrm{cms^{-1}})$	A1	1.1b
		(2)	
(7 marks)			
Question 8 Notes:			
(a)			
M1:	Differentiates V with respect to h to give $\pm \alpha h \pm \beta h^2$, $\alpha \neq 0$, $\beta \neq 0$		
A1:	$50\pi h - \pi h^2$		
M1:	Attempts to solve the problem by applying a complete method of $\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h}\right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 160\pi$		
M1:	Depends on the previous M mark.		
	Substitutes $h = 10$ into their model for $\frac{dh}{dt}$ which is in the form $\frac{160\pi}{\left(\text{their } \frac{dV}{dh}\right)}$		
A1:	Obtains the correct answer 0.4		
(b)			
M1:	Realises that rate for of 160π cm ³ s ⁻¹ for 0, <i>h</i> , 12 has no effect when the rate is increased to		
	300π cm ³ s ⁻¹ for $12 < h$, 24 and so substitutes $h = 20$ into their model for $\frac{dh}{dt}$ which is in the		
	form $\frac{300\pi}{\left(\text{their }\frac{\mathrm{d}V}{\mathrm{d}h}\right)}$		
A1:	Obtains the correct answer 0.5		