Question	Scheme	Marles	AOs
10 (a)	$x > \ln\left(\frac{4}{3}\right)$	B1	2.2a
		(1)	
(b)	Attempts to apply $\int y \frac{dx}{dt} dt$	M1	3.1a
	$\left\{ \int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t = \right\} = \int \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) \mathrm{d}t$	Al	1.1b
	$\frac{1}{(t+1)(t+2)} \equiv \frac{A}{(t+1)} + \frac{B}{(t+2)} \implies 1 \equiv A(t+2) + B(t+1)$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{(t+1)} - \frac{1}{(t+2)}$	Al	1.1b
	$\left\{ \int \left(\frac{1}{(t+1)} - \frac{1}{(t+2)} \right) dt = \right\} \ln(t+1) - \ln(t+2)$	M1	1.1b
		Al	1.1b
	Area(R) = $\left[\ln(t+1) - \ln(t+2)\right]_0^2 = (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	M1	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4}\right) = \ln \left(\frac{6}{4}\right)$		
	$=\ln\left(\frac{3}{2}\right)$ *	A1*	2.1
		(8)	
(b) Alt 1	Attempts to apply $\int y dx = \int \frac{1}{e^x - 2 + 1} dx = \int \frac{1}{e^x - 1} dx$,	M1	3.1a
	with a substitution of $u = e^x - 1$		
	$\left\{ \int y dx \right\} = \int \left(\frac{1}{u}\right) \left(\frac{1}{u+1}\right) du$	Al	1.1b
	$\frac{1}{u(u+1)} \equiv \frac{A}{u} + \frac{B}{(u+1)} \implies 1 \equiv A(u+1) + Bu$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow \}$ gives $\frac{1}{u} - \frac{1}{(u+1)}$	Al	1.1b
	$\int \int (1 1 dy = \int \ln y \ln(y+1)$	M1	1.1b
	$\left\{ \int \left(\frac{u}{u} - \frac{u}{(u+1)} \right)^{u} = \right\}^{u} = \int \frac{u}{u} - \frac{u}{(u+1)}$	Al	1.1b
	Area(R) = $[\ln u - \ln(u+1)]_1^3 = (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	M1	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4}\right) = \ln \left(\frac{6}{4}\right)$		
	$=\ln\left(\frac{3}{2}\right)*$	A1 *	2.1
		(8)	
		(9 1	narks)

Question	Scheme	Marks	AOs
10 (b) Alt 2	Attempts to apply $\int y dx = \int \frac{1}{e^x - 2 + 1} dx = \int \frac{1}{e^x - 1} dx$, with a substitution of $y = e^x$	Ml	3.1a
	with a substitution of $v = e^{-1}$		
	$\left\{ \int y dx \right\} = \int \left(\frac{1}{v-1}\right) \left(\frac{1}{v}\right) dv$	A1	1.1b
	$\frac{1}{(v-1)v} \equiv \frac{A}{(v-1)} + \frac{B}{v} \implies 1 \equiv Av + B(v-1)$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{(\nu-1)}-\frac{1}{\nu}$	A1	1.1b
	$\left\{ \int \left(\frac{1}{(v-1)} - \frac{1}{v}\right) dv = \right\} \ln(v-1) - \ln v$	Ml	1.1b
		Al	1.1b
	Area(R) = $[\ln(v-1) - \ln v]_2^4 = (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	Ml	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4}\right) = \ln \left(\frac{6}{4}\right)$		
	$= \ln\left(\frac{3}{2}\right) *$	A1 *	2.1
		(8)	

Questi	on 10 Notes:
(a)	
B1:	Uses $x = \ln(t+2)$ with $t > -\frac{2}{3}$ to deduce the correct domain, $x > \ln\left(\frac{4}{3}\right)$
(b)	
M1:	Attempts to solve the problem by either
	• a parametric process or
	• a Cartesian process with a substitution of either $u = e^x - 1$ or $v = e^x$
A1:	Obtains
	• $\int \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$ from a parametric approach
	• $\int \left(\frac{1}{u}\right) \left(\frac{1}{u+1}\right) du$ from a Cartesian approach with $u = e^x - 1$
	• $\int \left(\frac{1}{v-1}\right) \left(\frac{1}{v}\right) dv$ from a Cartesian approach with $v = e^x$
M1:	Applies a strategy of attempting to express either $\frac{1}{(t+1)(t+2)}$, $\frac{1}{u(u+1)}$ or $\frac{1}{(v-1)v}$
	as partial fractions
A1:	Correct partial fractions for their method
M1:	Integrates to give either
	• $\pm \alpha \ln(t+1) \pm \beta \ln(t+2)$
	• $\pm \alpha \ln u \pm \beta \ln(u+1)$; $\alpha, \beta \neq 0$, where $u = e^x - 1$
	• $\pm \alpha \ln(v-1) \pm \beta \ln v$; $\alpha, \beta \neq 0$, where $v = e^x$
A1:	Correct integration for their method
M1:	Either
	• Parametric approach: Deduces and applies limits of 2 and 0 in <i>t</i> and subtracts the correct way round
	• Cartesian approach: Deduces and applies limits of 3 and 1 in u , where $u = e^x - 1$, and subtracts the correct way round
	• Cartesian approach: Deduces and applies limits of 4 and 2 in v, where $v = e^x$, and subtracts the correct way round
A1*:	Correctly shows that the area of R is $\ln\left(\frac{3}{2}\right)$, with no errors seen in their working