Quest	on Scheme	Marks	AOs
11	Arithmetic sequence, $T_2 = 2k$, $T_3 = 5k - 10$, $T_4 = 7k - 14$		
	$(5k-10) - (2k) = (7k-14) - (5k-10) \implies k = \dots$	M1	2.1
	$\{3k-10 = 2k-4 \implies \} k=6$	A1	1.1b
	$\{k = 6 \Rightarrow\}$ $T_2 = 12, T_3 = 20, T_4 = 28$. So $d = 8, a = 4$	M1	2.2a
	$S_n = \frac{n}{2} (2(4) + (n-1)(8))$	M1	1.1b
	$=\frac{n}{2}(8+8n-8) = 4n^2 = (2n)^2$ which is a square number	A1	2.1
		(5)	
(5 marks)			
Question 11 Notes:			
M1:	Complete method to find the value of <i>k</i>		
A1:	Uses a correct method to find $k = 6$		
M1:	Uses their value of k to deduce the common difference and the first term $(\neq T_2)$ of the arithmetic		
	series.		
M1:	Applies $S_n = \frac{n}{2} (2a + (n-1)d)$ with their $a \neq T_2$ and their d.		
A1:	Correctly shows that the sum of the series is $(2n)^2$ and makes an appropriate conclusion.		