Complete process to find at least one set of coordinates for P. The process must include evidence of

- differentiating
- setting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ to find $x=\ldots$
- substituting $x=\ldots$ into $\sin x+\cos y=0.5$ to find $y=\ldots$
$\left\{\frac{x}{x} \approx\right\} \quad \cos x-\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
B1 1.1b

| Applies $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad\left(\mathrm{e} . \mathrm{g} . \cos x=0\right.$ or $\left.\frac{\cos x}{\sin y}=0 \Rightarrow \cos x=0\right) \Rightarrow x=\ldots$ | M 1 | 2.2 a |
| :--- | :--- | :--- | :--- |
| giving at least one of either $x=-\frac{\pi}{2}$ or $x=\frac{\pi}{2}$ | A1 | 1.1 b |
| $x=\frac{\pi}{2} \Rightarrow \sin \left(\frac{\pi}{2}\right)+\cos y=0.5 \Rightarrow \cos y=-\frac{1}{2} \Rightarrow y=\frac{2 \pi}{3}$ or $-\frac{2 \pi}{3}$ | M 1 | 1.1 b |
| So in specified range, $(x, y)=\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and $\left(\frac{\pi}{2},-\frac{2 \pi}{3}\right)$, by cso | A1 | 1.1 b |

$x=-\frac{\pi}{2} \Rightarrow \sin \left(-\frac{\pi}{2}\right)+\cos y=0.5 \Rightarrow \cos y=1.5$ has no solutions,
and so there are exactly 2 possible points P.
(7 marks)

Question 12 Notes:

M1: \quad See scheme
B1: Correct differentiated equation. E.g. $\cos x-\sin y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
M1: Uses the information "the tangent to C at the point P is parallel to the x-axis" to deduce and apply $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and finds $x=\ldots$
A1: \quad See scheme
M1: For substituting one of their values from $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ into $\sin x+\cos y=0.5$ and so finds $x=\ldots, y=\ldots$
A1: \quad Selects coordinates for P on C satisfying $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $-\frac{\pi}{2}$, $x<\frac{3 \pi}{2},-\pi<y<\pi$ i.e. finds $\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and $\left(\frac{\pi}{2},-\frac{2 \pi}{3}\right)$ and no other points by correct solution only

B1: \quad Complete argument to show that there are exactly 2 possible points P.

