Question	Scheme	Marks	AOs	
13(a)	$\csc 2x + \cot 2x \equiv \cot x, \ x \neq 90n^{\circ}, \ n \in \Box$			
	$\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{\cos 2x}{\sin 2x}$	M1	1.2	
	$=\frac{1+\cos 2x}{\sin 2x}$	M1	1.1b	
	$= \frac{1 + 2\cos^2 x - 1}{2\sin x \cos x} = \frac{2\cos^2 x}{2\sin x \cos x}$	M1	2.1	
	$\frac{1}{2\sin x \cos x} = \frac{1}{2\sin x \cos x}$	Al	1.1b	
	$=\frac{\cos x}{\sin x}=\cot x *$	A1*	2.1	
		(5)		
(b)	$\csc(4\theta + 10^\circ) + \cot(4\theta + 10^\circ) = \sqrt{3}; 0, \theta < 180^\circ,$			
	$\cot\left(2\theta\pm^{\circ}\right)=\sqrt{3}$	M1	2.2a	
	$2\theta \pm = 30^{\circ} \Rightarrow \theta = 12.5^{\circ}$	M1	1.1b	
		A1	1.1b	
	$2\theta + 5^\circ = 180^\circ + PV^\circ \implies \theta =^\circ$	M1	2.1	
	$\theta = 102.5^{\circ}$	A1	1.1b	
		(5)		
	(10 marks)			

Question 13 Notes:		
(a)		
M1:	Writes $\csc 2x = \frac{1}{\sin 2x}$ and $\cot 2x = \frac{\cos 2x}{\sin 2x}$	
M1:	Combines into a single fraction with a common denominator	
M1:	Applies $\sin 2x = 2\sin x \cos x$ to the denominator and applies either	
	$\bullet \cos 2x = 2\cos^2 x - 1$	
	• $\cos 2x = 1 - 2\sin^2 x$ and $\sin^2 x + \cos^2 x = 1$	
	• $\cos 2x = \cos^2 x - \sin^2 x$ and $\sin^2 x + \cos^2 x = 1$	
	to the numerator and manipulates to give a one term numerator expression	
A1:	Correct algebra leading to $\frac{2\cos^2 x}{2\sin x \cos x}$ or equivalent.	
A1*:	Correct proof with correct notation and no errors seen in working	
(b)		
M1:	Uses the result in part (a) in an attempt to deduce either $2x = 4\theta + 10$ or $x = 2\theta +$ and uses	
	$x = 2\theta +$ to write down or imply $\cot(2q \pm^{\circ}) = \sqrt{3}$	
M1:	Applies $\operatorname{arccot}(\sqrt{3}) = 30^{\circ} \text{ or } \operatorname{arctan}\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$	
	and attempts to solve $2\theta \pm = 30^{\circ}$ to give $\theta =$	
A1:	Uses a correct method to obtain $\theta = 12.5^{\circ}$	
M1:	Uses $2\theta + 5 = 180$ + their PV° in a complete method to find the second solution, $\theta =$	
A1:	Uses a correct method to obtain $\theta = 102.5^{\circ}$, with no extra solutions given either inside or outside the required range 0,, $\theta < 180^{\circ}$	