Question	Scheme	Marks	AOs
14 (i)	For an explanation or statement to show when the claim $3^x ldots 2^x$ fails This could be e.g. • when $x = -1$, $\frac{1}{3} < \frac{1}{2}$ or $\frac{1}{3}$ is not greater than or equal to $\frac{1}{2}$ • when $x < 0$, $3^x < 2^x$ or 3^x is not greater than or equal to 2^x	M1	2.3
	 followed by an explanation or statement to show when the claim 3^x2^x is true. This could be e.g. x = 2, 94 or 9 is greater than or equal to 4 when x0, 3^x2^x and a correct conclusion. E.g. so the claim 3^x2^x is sometimes true 	A1	2.4
		(2)	
(ii)	Assume that $\sqrt{3}$ is a rational number So $\sqrt{3} = \frac{p}{q}$, where p and q integers, $q \neq 0$, and the HCF of p and q is 1	M1	2.1
	$\Rightarrow p = \sqrt{3} q \Rightarrow p^2 = 3q^2$	M1	1.1b
	$\Rightarrow p^2$ is divisible by 3 and so p is divisible by 3	A1	2.2a
	So $p = 3c$, where c is an integer From earlier, $p^2 = 3q^2 \implies (3c)^2 = 3q^2$	M1	2.1
	$\Rightarrow q^2 = 3c^2 \Rightarrow q^2$ is divisible by 3 and so q is divisible by 3	A1	1.1b
	As both p and q are both divisible by 3 then the HCF of p and q is not 1 This contradiction implies that $\sqrt{3}$ is an irrational number	A1	2.4
		(6)	
		(0	1 \

(8 marks)

Question 14 Notes:		
(i)		
M1:	See scheme	
A1:	See scheme	
(ii)		
M1:	Uses a method of proof by contradiction by initially assuming that $\sqrt{3}$ is rational and expresses	
	$\sqrt{3}$ in the form $\frac{p}{q}$, where p and q are correctly defined.	
M1:	Writes $\sqrt{3} = \frac{p}{q}$ and rearranges to make p^2 the subject	
A1:	Uses a logical argument to prove that p is divisible by 3	
M1:	Uses the result that p is divisible by 3, (to construct the initial stage of proving that q is also	
	divisible by 3), by substituting $p = 3c$ into their expression for p^2	
A1:	Hence uses a correct argument, in the same way as before, to deduce that q is also divisible by 3	
A1:	Completes the argument (as detailed on the scheme) that $\sqrt{3}$ is irrational.	
	Note: All the previous 5 marks need to be scored in order to obtain the final A mark.	