8.

Figure 3

A bowl is modelled as a hemispherical shell as shown in Figure 3.

Initially the bowl is empty and water begins to flow into the bowl.

When the depth of the water is $h \, \text{cm}$, the volume of water, $V \, \text{cm}^3$, according to the model is given by

$$V = \frac{1}{3}\pi h^2(75 - h), \qquad 0 \leqslant h \leqslant 24$$

The flow of water into the bowl is at a constant rate of 160π cm³ s⁻¹ for $0 \le h \le 12$

(a) Find the rate of change of the depth of the water, in cm s⁻¹, when h = 10

Given that the flow of water into the bowl is increased to a constant rate of $300\pi\,\mathrm{cm^3\,s^{-1}}$ for $12 < h \leqslant 24$

(b) find the rate of change of the depth of the water, in cm s⁻¹, when h = 20

(2)

(5)