Questio		Marks	AOs
1	$g(x) = \frac{2x+5}{x-3}, \ x \ge 5$ $g(5) = \frac{2(5)+5}{5-3} = 7.5 \implies gg(5) = \frac{2("7.5")+5}{"7.5"-3}$		
(a)	$g(5) = \frac{2(5) + 5}{5 - 3} = 7.5 \implies gg(5) = \frac{2("7.5") + 5}{"7.5" - 3}$	M1	1.1b
Way 1	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b
		(2)	
(a) Way 2	$gg(x) = \frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3} \implies gg(5) = \frac{2\left(\frac{2(5)+5}{(5)-3}\right)+5}{\left(\frac{2(5)+5}{(5)-3}\right)-3}$	M1	1.1b
	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b
	· · · ·	(2)	
(b)	{Range:} $2 < y \le \frac{15}{2}$	B1	1.1b
		(1)	
(c) Way 1	$y = \frac{2x+5}{x-3} \Rightarrow yx-3y = 2x+5 \Rightarrow yx-2x = 3y+5$	M1	1.1b
	$x(y-2) = 3y+5 \implies x = \frac{3y+5}{y-2} \left\{ \text{or } y = \frac{3x+5}{x-2} \right\}$	M1	2.1
	$g^{-1}(x) = \frac{3x+5}{x-2}, 2 < x \le \frac{15}{2}$	A1ft	2.5
(-)	2 6 11 11	(3)	
(c) Way 2	$y = \frac{2x - 6 + 11}{x - 3} \Rightarrow y = 2 + \frac{11}{x - 3} \Rightarrow y - 2 = \frac{11}{x - 3}$	M1	1.1b
	$y = \frac{2x - 6 + 11}{x - 3} \Rightarrow y = 2 + \frac{11}{x - 3} \Rightarrow y - 2 = \frac{11}{x - 3}$ $x - 3 = \frac{11}{y - 2} \Rightarrow x = \frac{11}{y - 2} + 3 \left\{ \text{or } y = \frac{11}{x - 2} + 3 \right\}$	M1	2.1
	$g^{-1}(x) = \frac{11}{x-2} + 3$, $2 < x \le \frac{15}{2}$	A1ft	2.5
		(3)	
	Notes for Question 1	(6	marks)
(a)	Notes for Question 1		
M1:	Full method of attempting g(5) and substituting the result into g		
	Way 2: Attempts to substitute $x = 5$ into $\frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3}$, o.e. Note that $gg(x) = \frac{9x-5}{14-x}$		
A1:	Obtains $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4 or an exact equivalent		
	404		

Give A0 for 4.4 or 4.444... without reference to $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4

Note:

Notes for Question 1 Continued		
(b)		
B1:	States $2 < y \le \frac{15}{2}$ Accept any of $2 < g \le \frac{15}{2}$, $2 < g(x) \le \frac{15}{2}$, $\left(2, \frac{15}{2}\right]$	
Note:	Accept $g(x) > 2$ and $g(x) \le \frac{15}{2}$ o.e.	
(c) Way 1		
M1:	Correct method of cross multiplication followed by an attempt to collect terms in x or erms in a swapped y	
M1:	A complete method (i.e. as above and also factorising and dividing) to find the inverse	
A1ft:	Uses correct notation to correctly define the inverse function g ⁻¹ , where the domain of	
	g ⁻¹ stated correctly or correctly followed through (using correct notation) on the values shown in	
	their range in part (b). Allow $g^{-1}: x \to .$ Condone $g^{-1} =$ Do not accept $y =$	
Note:	Correct notation is required when stating the domain of $g^{-1}(x)$. Allow $2 < x \le \frac{15}{2}$ or $\left(2, \frac{15}{2}\right]$	
	Do not allow any of e.g. $2 < g \le \frac{15}{2}$, $2 < g^{-1}(x) \le \frac{15}{2}$	
Note:	Do not allow A1ft for following through their range in (b) to give a domain for g^{-1} as $x \in \mathbb{R}$	
(c) Way 2		
M1:	Writes $y = \frac{2x+5}{x-3}$ in the form $y = 2 \pm \frac{k}{x-3}$, $k \ne 0$ and rearranges to isolate y and 2 on one side	
	of their equation. Note: Allow the equivalent method with x swapped with y	
M1:	A complete method to find the inverse	
A1ft:	As in Way 1	
Note:	If a candidate scores no marks in part (c), but	
	• states the domain of g ⁻¹ correctly, or	
	• states a domain of g ⁻¹ which is correctly followed through on the values shown in their	
	range in part (b) then give special case (SC) M1 M0 A0	
	then give special case (SC) ivii ivio Au	