Questi	on Scheme	Marks	AOs
2	$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}, \ \overrightarrow{OB} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}, \ \overrightarrow{OC} = a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}, \ a < 0$		
2	$\overrightarrow{AB} = \overrightarrow{BD}, \ \left \overrightarrow{AB} \right = 4$		
(a)	E.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB}$		
	or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{OB} - \overrightarrow{OA}$		
	or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AB}$		
	$= \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \left\{ = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$	M1	3.1a
	$\mathbf{or} = \begin{pmatrix} 2\\3\\-4 \end{pmatrix} + 2 \begin{pmatrix} 4\\-2\\3 \end{pmatrix} - \begin{pmatrix} 2\\3\\-4 \end{pmatrix} \end{pmatrix} \left\{ = \begin{pmatrix} 2\\3\\-4 \end{pmatrix} + 2 \begin{pmatrix} 2\\-5\\7 \end{pmatrix} \right\}$		
	$= \begin{pmatrix} 6\\-7\\10 \end{pmatrix} \text{ or } 6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$	A1	1.1b
		(2)	
(b)	$(a-2)^2 + (5-3)^2 + (-2-4)^2$	M1	1.1b
	$\left\{ \left \overrightarrow{AC} \right = 4 \implies \right\} (a-2)^2 + (5-3)^2 + (-2-4)^2 = (4)^2$	dM1	2.1
	$\Rightarrow (a-2)^2 = 8 \Rightarrow a = \dots \text{ or } \Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = \dots$		
	(as $a < 0 \Rightarrow$) $a = 2 - 2\sqrt{2}$ (or $a = 2 - \sqrt{8}$)	A1	1.1b
		(3)	
(5 marks) Notes for Question 2			
(a)			
M1:	Complete <i>applied</i> strategy to find a vector expression for \overrightarrow{OD}		
A1:	See scheme		
Note:	Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i}-2\mathbf{j}+3\mathbf{k}) + (2\mathbf{i}+3\mathbf{j}-4\mathbf{k}) - (4\mathbf{i}-2\mathbf{j}+3\mathbf{k}) = (4\mathbf{i}-2\mathbf{j}+3\mathbf{k}) + (-2\mathbf{i}+5\mathbf{j}-7\mathbf{k}) = (2\mathbf{i}+3\mathbf{j}-4\mathbf{k})$		
Note:	Writing e.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{AB}$ or $\overrightarrow{OD} = 2\overrightarrow{OB} - \overrightarrow{OA}$ with no other work is M0		
Note:	Finding <i>coordinates</i> , i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0		
Note:	Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working		
Note:	M1 can be implied for at least two correct components in their position vector	ot D	
(0) M1.	Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} then squares and adds each of the	3 compone	onte
1711.	Note: Ignore labelling	, s compone	1113
dM1:	Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ \overrightarrow{AC} = 4$ and using a correct		
	method of solving their resulting quadratic equation to find at least one of $a = \dots$		
Note:	Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark		
A1:	Obtains only one exact value, $a = 2 - 2\sqrt{2}$		
Note:	Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0		
Note:	Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		
Note:	Writing $a = -0.828$, without reference to a correct exact value is A0		