Questi	on Scheme	Marks	AOs	
5	The equation $2x^3 + x^2 - 1 = 0$ has exactly one real root			
(a)	$\{f(x) = 2x^3 + x^2 - 1 \Rightarrow\} f'(x) = 6x^2 + 2x$	B1	1.1b	
	$\left\{ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow \right\} \left\{ x_{n+1} \right\} = x_n - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$	M1	1.1b	
	$= \frac{x_n(6x_n^2 + 2x_n) - (2x_n^3 + x_n^2 - 1)}{6x_n^2 + 2x_n} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n} *$	A1*	2.1	
		(3)		
(b)	$ \{x_1 = 1 \implies \} x_2 = \frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)} \text{ or } x_2 = 1 - \frac{2(1)^3 + (1)^2 - 1}{6(1)^2 + 2(1)} $ $ \implies x_2 = \frac{3}{4}, x_3 = \frac{2}{3} $	M1	1.1b	
	$\Rightarrow x_2 = \frac{3}{4}, \ x_3 = \frac{2}{3}$	A1	1.1b	
		(2)		
(c)	Accept any reasons why the Newton-Raphson method cannot be used with $x_1 = 0$ which refer or <i>allude</i> to either the stationary point or the tangent. E.g.	D.1		
	 There is a stationary point at x = 0 Tangent to the curve (or y = 2x³ + x² - 1) would not meet the x-axis 	B1	2.3	
	• Tangent to the curve (or $y = 2x^3 + x^2 - 1$) is horizontal			
		(1)		
		(6	marks)	
(a)	Notes for Question 5			
(a) B1:	States that $f'(x) = 6x^2 + 2x$ or states that $f'(x_n) = 6x_n^2 + 2x_n$ (Condone $\frac{dy}{dx} = 6x^2 + 2x$)			
M1:	Substitutes $f(x_n) = 2x_n^3 + x_n^2 - 1$ and their $f'(x_n)$ into $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$			
A1*:	A correct intermediate step of making a common denominator which leads to the given answer			
Note:	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula $\{x_{n+1}\} = x_n - \frac{f(x_n)}{f'(x_n)}$			
Note:	Allow M1A1 for • $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n}$			
Note	Condone $x = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x^2}$ for M1			
Note	Condone $x_n - \frac{2x_n^3 + x_n^2 - 1}{"6x_n^2 + 2x_n"}$ or $x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ (i.e. no $x_{n+1} =$) for M1			
Note:	Give M0 for $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ followed by $x_{n+1} = 2x_n^3 + x_n^2 - 1 - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$ Correct notation, i.e. x_{n+1} and x_n must be seen in their final answer for A1*			
		n		

Notes for Question 5 Continued		
(b)		
M1:	An attempt to use the given or their formula once. Can be implied by $\frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)}$ or 0.75 o.e.	
Note:	Allow one slip in substituting $x_1 = 1$	
A1:	$x_2 = \frac{3}{4}$ and $x_3 = \frac{2}{3}$	
Note:	Condone $x_2 = \frac{3}{4}$ and $x_3 = awrt 0.667$ for A1	
Note:	Condone $\frac{3}{4}, \frac{2}{3}$ listed in a correct order ignoring subscripts	
(c)		
B1:	See scheme	
Note:	 Give B0 for the following isolated reasons: e.g. You cannot divide by 0 The fraction (or the NR formula) is undefined at x = 0 At x = 0, f'(x₁) = 0 x₁ cannot be 0 6x² + 2x cannot be 0 the denominator is 0 which cannot happen if x₁ = 0, 6x² + 2x = 0 	