Questi	on Scheme	Marks	AOs	
6	(a) $f(x) = -3x^3 + 8x^2 - 9x + 10, x \in \mathbb{R}$			
(a)	(i) $\{f(2) = -24 + 32 - 18 + 10 \Longrightarrow\} f(2) = 0$	B1	1.1b	
	(ii) {f(x) = } (x-2)(-3x ² +2x-5) or (2-x)(3x ² -2x+5)	M1	2.2a	
	(1) (1(x)) (x - 2) (-3x + 2x - 3) (1 - (2 - x)(3x - 2x + 3))	A1	1.1b	
		(3)		
(b)	$-3y^{6} + 8y^{4} - 9y^{2} + 10 = 0 \implies (y^{2} - 2)(-3y^{4} + 2y^{2} - 5) = 0$ Gives a partial explanation by			
	• explaining that $-3y^4 + 2y^2 - 5 = 0$ has no {real} solutions with a			
	reason, e.g. $b^2 - 4ac = (2)^2 - 4(-3)(-5) = -56 < 0$	M1	2.4	
	• or stating that $y^2 = 2$ has 2 {real} solutions or $y = \pm \sqrt{2}$ {only}			
	Complete proof that the given equation has exactly two {real} solutions	A1	2.1	
		(2)		
(c)	$3\tan^3\theta - 8\tan^2\theta + 9\tan\theta - 10 = 0; \ 7\pi \le \theta < 10\pi$			
	{Deduces that} there are 3 solutions	B1	2.2a	
		(1)		
	Notes for Question 4	(6	marks)	
(a)(i)	Notes for Question 6			
B1:	f(2) = 0 or 0 stated by itself in part (a)(i)			
(a)(ii)				
M1:	Deduces that $(x-2)$ or $(2-x)$ is a factor and attempts to find the other quadratic factor by			
	• using long division to obtain either $\pm 3x^2 \pm kx +, k = \text{value} \neq 0$ or			
	$\pm 3x^2 \pm \alpha x + \beta$, $\beta = \text{value} \neq 0$, α can be 0			
	• factorising to obtain their quadratic factor in the form $(\pm 3x^2 \pm kx \pm c)$, $k = \text{value} \neq 0$,			
	<i>c</i> can be 0, or in the form $(\pm 3x^2 \pm \alpha x \pm \beta)$, $\beta = \text{value} \neq 0$, α can be 0		2	
A1:	$(x-2)(-3x^2+2x-5), (2-x)(3x^2-2x+5) \text{ or } -(x-2)(3x^2-2x+5) \text{ stated together as a product}$			
(b)	(x - 2)(-3x + 2x - 3); (2 - x)(3x - 2x + 3)(31 - (x - 2)(3x - 2x + 3)) stated	logether as a	i product	
M1:	See scheme			
A1:	See scheme. Proof must be correct with no errors, e.g. giving an incorrect discriminant value			
Note:	Correct calculation e.g. $(2)^2 - 4(-3)(-5)$, $4 - 60$ or -56 must be given for the first explanation			
Note:	Note that M1 can be allowed for	4 2		
	• a correct follow through calculation for the discriminant of their " $-3y$			
	which would lead to a value < 0 together with an explanation that -3	$y^4 + 2y^2 - 5$	=0 has	
	no {real} solutions			
Note:	 or for the omission of < 0 < 0 must also been stated in a discriminant method for A1 			
Note:	Do not allow A1 for incorrect working, e.g. $(2)^2 - 4(-3)(-5) = -54 < 0$			
Note:	$y^2 = 2 \Rightarrow y = \pm 2$, so 2 solutions is not allowed for A1, but can be condoned for M1			
Note:	Using the formula on $-3y^4 + 2y^2 - 5 = 0$ or $-3x^2 + 2x - 5 = 0$			
	gives y^2 or $x = \frac{-2 \pm \sqrt{-56}}{-6}$ or $\frac{-1 \pm \sqrt{-14}}{-3}$			

Notes for Question 6 Continued		
Note:	Completing the square on $-3x^2 + 2x - 5 = 0$	
	gives $x^2 - \frac{2}{3}x + \frac{5}{3} = 0 \implies \left(x - \frac{1}{3}\right)^2 - \frac{1}{9} + \frac{5}{3} = 0 \implies x = \frac{1}{3} \pm \sqrt{\frac{-14}{9}}$	
Note:	Do not recover work for part (b) in part (c)	
(c)		
B1:	See scheme	
Note:	Give B0 for stating θ = awrt 23.1, awrt 26.2, awrt 29.4 without reference to 3 solutions	