Question	Scheme	Marks	AOs
8 (a)	$H = Ax(40 - x) $ {or $H = Ax(x - 40)$ }	M1	3.3
Way 1	$x = 20, H = 12 \implies 12 = A(20)(40 - 20) \implies A = \frac{3}{100}$	dM1	3.1b
	$H = \frac{3}{100}x(40 - x) \text{ or } H = -\frac{3}{100}x(x - 40)$	A1	1.1b
		(3)	
(a)	$H = 12 - \lambda (x - 20)^2$ {or $H = 12 + \lambda (x - 20)^2$ }	M1	3.3
Way 2	$x = 40, H = 0 \Longrightarrow 0 = 12 - \lambda (40 - 20)^2 \Longrightarrow \lambda = \frac{3}{100}$	dM1	3.1b
	$H = 12 - \frac{3}{100}(x - 20)^2$	A1	1.1b
		(3)	
(a) Way 3	$H = ax^{2} + bx + c (\text{or deduces } H = ax^{2} + bx)$ Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ or $x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ or $\frac{-b}{2} = 20 \{ \Rightarrow b = -40a \}$	M1	3.3
	$b = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03$	dM1	3.1b
	$H = -0.03x^2 + 1.2x$	A1	1.1b
		(3)	
(b)	{ $H = 3 \Rightarrow$ } $3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0$ or { $H = 3 \Rightarrow$ } $3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300$	M1	3.4
	e.g. $x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)}$ or $x = 20 \pm \sqrt{300}$	dM1	1.1b
	{chooses $20 + \sqrt{300} \Rightarrow}$ greatest distance = awrt 37.3 m	A1	3.2a
		(3)	
(c)	 Gives a limitation of the model. Accept e.g. the ground is horizontal the ball needs to be kicked from the ground the ball is modelled as a particle the horizontal bar needs to be modelled as a line there is no wind or air resistance on the ball there is no spin on the ball no obstacles in the trajectory (or path) of the ball the trajectory of the ball is a perfect parabola 	B1	3.5b
		(1)	
		('	/ marks)

Notes for Question 8		
(a)		
M1:	Translates the situation given into a suitable equation for the model. E.g.	
	Way 1: {Uses (0, 0) and (40, 0) to write} $H = Ax(40 - x)$ o.e. {or $H = Ax(x - 40)$ }	
	Way 2: {Uses (20, 12) to write} $H = 12 - \lambda (x - 20)^2$ or $H = 12 + \lambda (x - 20)^2$	
	Way 3: Writes $H = ax^2 + bx + c$, and uses $(0, 0)$ to deduce $c = 0$ and an attempt at using either	
	(40, 0) or (20, 12)	
	Special Case: Allow SC M1dM0A0 for not deducing $c = 0$ but attempting to apply both (40, 0)	
	and (20, 12)	
dM1:	Applies a complete strategy with appropriate constraints to find all constants in their model.	
	Way 1: Uses $(20, 12)$ on their model and finds $A =$	
	Way 2: Uses either $(40, 0)$ or $(0, 0)$ on their model to find $\lambda =$	
	Way 3: Uses $(40, 0)$ and $(20, 12)$ on their model to find $a = \dots$ and $b = \dots$	
A1:	Finds a correct equation linking <i>H</i> to <i>x</i>	
	E.g. $H = \frac{3}{100}x(40-x), H = 12 - \frac{3}{100}(x-20)^2$ or $H = -0.03x^2 + 1.2x$	
Note:	Condone writing <i>y</i> in place of <i>H</i> for the M1 and dM1 marks.	
Note:	Give final A0 for $y = -0.03x^2 + 1.2x$	
Note:	Give special case M1dM0A0 for writing down any of $H = 12 - (x - 20)^2$ or $H = x(40 - x)$	
	or $H = x(x - 40)$	
Note:	Give M1 dM1 for finding $-0.03x^2 + 1.2x$ or $a = -0.03, b = 1.2, c = 0$ in an implied	
	$ax^2 + bx$ or $ax^2 + bx + c$ (with no indication of $H =$)	
(b)		
M1:	Substitutes $H = 3$ into their quadratic equation and proceeds to obtain a 3TQ	
	or a quadratic in the form $(x \pm \alpha)^2 = \beta; \alpha, \beta \neq 0$	
Note:	E.g. $1.2x - 0.03x^2 = 3$ or $40x - x^2 = 100$ are acceptable for the 1 st M mark	
Note:	Give M0 dM0 A0 for (their A) $x^2 = 3 \Rightarrow x =$ or their (their A) x^2 + (their k) = 3 $\Rightarrow x =$	
dM1:	Correct method of solving their quadratic equation to give at least one solution	
A1:	Interprets their solution in the original context by selecting the larger correct value <i>and states</i>	
	<i>correct units for their value</i> . E.g. Accept awrt 37.3 m or $(20 + \sqrt{300})$ m or $(20 + 10\sqrt{3})$ m	
Note:	Condone the use of inequalities for the method marks in part (b)	
(c):		
B1:	See scheme	
Note:	Give no credit for the following reasons H (or the height of hell) is negative when $x > 40$	
	 Bounce of the ball should be considered after hitting the ground 	
	 Model will not be true for a different rugby ball 	
	• Ball may not be kicked in the same way each time	