Question		Scheme	Marks	AOs	
9		$\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta; \text{ as } h \to 0, \frac{\sin h}{h} \to 1 \text{ and } \frac{\cos h - 1}{h} \to 0$			
		$\frac{\cos(\theta+h)-\cos\theta}{h}$	B1	2.1	
		$\cos\theta\cos h - \sin\theta\sin h - \cos\theta$	M1	1.1b	
		= h	A1	1.1b	
		$= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$			
		As $h \to 0$, $-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta \to -1\sin \theta + 0\cos \theta$	dM1	2.1	
		so $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta *$	A1*	2.5	
			(5)		
			(5	marks)	
	Notes for Question 9				
B1:	Giv	es the correct fraction such as $\frac{\cos(\theta + h) - \cos\theta}{h}$ or $\frac{\cos(\theta + \delta\theta) - \cos\theta}{\sin\theta}$			
		$h \qquad \qquad$			
	Alle	by $\frac{\cos(\theta+h)-\cos\theta}{(\theta+h)-\theta}$ o.e. Note: $\cos(\theta+h)$ or $\cos(\theta+\theta)$ may be expa	nded		
M1:	Use	Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta\cos h \pm \sin\theta\sin h$			
		$\cos\theta\cos h - \sin\theta\sin h - \cos\theta$			
Al:	Act	heves or equivalent			
dM1:	dep	dependent on both the B and M marks being awarded			
	Cor	nplete attempt to apply the given limits to the gradient of their chord	(
Note:	The	ey must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0			
A1*:	cso	so. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$			
Note:	Acc	Acceptable responses for the final A mark include:			
	•	$\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta \right) = -1\sin\theta + 0\cos\theta$	$s\theta = -\sin\theta$	١	
	•	Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient	nt of chord t	ends to	
		the gradient of the curve, so derivative is $-\sin\theta$			
	•	Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient	nt of <i>curve</i>	is $-\sin\theta$	
Note:	Giv	e final A0 for the following example which shows <i>no limiting arguments</i> :			
	whe	$\operatorname{en} h = 0, \ \frac{\mathrm{d}}{\mathrm{d}\theta} (\cos\theta) = -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta = -1\sin\theta + 0\cos\theta$	$=-\sin\theta$		
Note:	Do	Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply these			
Note:	In t	In this question $\delta \theta$ may be used in place of h			
Note:	Cor	Condone $f'(\theta)$ where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$			

Notes for Question 9 Continued				
Note:	Condone x used in place of θ if this is done consistently			
Note:	Give final A0 for			
	• $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos x) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta \right) = -1\sin \theta + 0\cos \theta = -\sin \theta$			
	• $\frac{\mathrm{d}}{\mathrm{d}\theta} = \dots$			
	• Defining $f(x) = \cos \theta$ and applying $f'(x) =$			
	• $\frac{\mathrm{d}}{\mathrm{d}x}(\cos\theta)$			
Note:	Give final A1 for a correct limiting argument in x, followed by $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$			
	e.g. $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos x) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin x + \left(\frac{\cos h - 1}{h}\right) \cos x \right) = -1\sin x + 0\cos x = -\sin x$			
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta$			
Note:	Applying $h \to 0$, $\sin h \to h$, $\cos h \to 1$ to give e.g.			
	$\lim_{h \to 0} \left(\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h} \right) = \left(\frac{\cos\theta(1) - \sin\theta(h) - \cos\theta}{h} \right) = \frac{-\sin\theta(h)}{h} = -\sin\theta$			
	is final M0 A0 for incorrect application of limits			
Note:	$\lim_{h \to \infty} \left(\cos\theta \cos h - \sin\theta \sin h - \cos\theta \right) \qquad \lim_{h \to \infty} \left(\sin h \sin\theta + \left(\cos h - 1 \right) \cos\theta \right)$			
	$h \to 0 \left(\frac{h}{h} \right)^{-1} = h \to 0 \left(\frac{h}{h} \sin \theta + \left(\frac{h}{h} \right)^{-1} \cos \theta \right)$			
	lim lim			
	$= \underbrace{(-(1)\sin\theta + 0\cos\theta)}_{h \to 0} = -\sin\theta. \text{ So for not removing}_{h \to 0}$			
	when the limit was taken is final A0			
Note:	<u>Alternative Method</u> : Considers $\frac{\cos(\theta+h) - \cos(\theta-h)}{(\theta+h) - (\theta-h)}$ which simplifies to $\frac{-2\sin\theta\sin h}{2h}$			