Questi	on Scheme	Marks	AOs			
11	$\frac{1+11x-6x^2}{(x-3)(1-2x)} = A + \frac{B}{(x-3)} + \frac{C}{(1-2x)}$					
(a)	$1+11x-6x^{2} \equiv A(1-2x)(x-3) + B(1-2x) + C(x-3) \Longrightarrow B =, C =$	M1	2.1			
Way 1	1 A=3	B1	1.1b			
	Uses substitution or compares terms to find either $B =$ or $C = .$	M1	1.1b			
	B = 4 and $C = -2$ which have been found using a correct identity	y Al	1.1b			
		(4)				
(a) Way 2	2 {long division gives} $\frac{1+11x-6x^2}{(x-3)(1-2x)} = 3 + \frac{-10x+10}{(x-3)(1-2x)}$					
	$-10x + 10 \equiv B(1-2x) + C(x-3) \Longrightarrow B = \dots, C = \dots$	M1	2.1			
	A = 3	B1	1.1b			
	Uses substitution or compares terms to find either $B =$ or $C = .$	M1	1.1b			
	B = 4 and $C = -2$ which have been found using $-10x + 10 \equiv B(1-2x) + C(x-3)$	Al	1.1b			
		(4)				
(b)	$f(x) = 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)} \{ = 3 + 4(x-3)^{-1} - 2(1-2x)^{-1} \}; \ x > 3$	3				
		M1	2.1			
	$\mathbf{f}'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2} \left\{ = -\frac{4}{(x-3)^2} - \frac{4}{(1-2x)^2} \right\}$	Alft	1.1b			
	Correct $f'(x)$ and as $(x-3)^2 > 0$ and $(1-2x)^2 > 0$,	Al	2.4			
	then $f'(x) = -(+ve) - (+ve) < 0$, so $f(x)$ is a decreasing function	n				
		(3)	mark			
	Notes for Question 11	(,	iner it.			
(a)						
M1:	Way 1: Uses a correct identity $1+11x-6x^2 \equiv A(1-2x)(x-3)+B(1-2x)+C(x-3)$ in a complete method to find values for <i>B</i> and <i>C</i> . Note: Allow one slip in copying $1+11x-6x^2$ Way 2: Uses a correct identity $-10x+10 \equiv B(1-2x)+C(x-3)$ (which has been found from					
	long division) in a complete method to find values for B and C					
B1:	A=3					
M1:	Attempts to find the value of either <i>B</i> or <i>C</i> from their identity This can be achieved by <i>either</i> substituting values into their identity <i>or</i> by comparing coefficients and solving the resulting equations simultaneously					
A1:	See scheme					
Note:	Way 1: Comparing terms: $x^2: -6 = -2A; x: \ 11 = 7A - 2B + C; \text{ constant}: \ 1 = -3A + B - 3C$					
	Way 1: Substituting: $x = 3: -20 = -5B \implies B = 4; x = \frac{1}{2}: 5 = -\frac{5}{2}C \implies C = -2$					
Note:	Way 2: Comparing terms: $x: -10 = -2B + C$; constant : $10 = B - 3C$ Way 2: Substituting: $x = 3: -20 = -5B \Longrightarrow B = 4$; $x = \frac{1}{2}: 5 = -\frac{5}{2}C \Longrightarrow C$					

Note:	A=3, B=4, C=-2 from no working scores M1B1M1A1
Note:	The final A1 mark is effectively dependent upon both M marks

Notes for Question 11 Continued			
(a) ctd			
Note:	Writing $1+11x-6x^2 \equiv B(1-2x)+C(x-3) \Rightarrow B=4, C=-2$ will get 1 st M0, 2 nd M1, 1 st A0		
Note:	Way 1: You can imply a correct identity $1+11x-6x^2 \equiv A(1-2x)(x-3)+B(1-2x)+C(x-3)$		
	from seeing $\frac{1+11x-6x^2}{(x-3)(1-2x)} = \frac{A(1-2x)(x-3)+B(1-2x)+C(x-3)}{(x-3)(1-2x)}$		
	$\frac{1}{(x-3)(1-2x)} - \frac{1}{(x-3)(1-2x)}$		
Note:	Way 2: You can imply a correct identity $-10x+10 \equiv B(1-2x)+C(x-3)$		
	from seeing $\frac{-10x+10}{(x-3)(1-2x)} \equiv \frac{B(1-2x)+C(x-3)}{(x-3)(1-2x)}$		
(b)			
M1:	Differentiates to give $\{f'(x) = \} \pm \lambda (x-3)^{-2} \pm \mu (1-2x)^{-2}; \lambda, \mu \neq 0$		
A1ft:	$f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2}$, which can be simplified or un-simplified		
Note:	Allow A1ft for $f'(x) = -(\text{their } B)(x-3)^{-2} + (2)(\text{their } C)(1-2x)^{-2}$; (their B), (their C) $\neq 0$		
A1:	$f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2}$ or $f'(x) = -\frac{4}{(x-3)^2} - \frac{4}{(1-2x)^2}$ and a correct explanation		
	e.g. $f'(x) = -(+ve) - (+ve) < 0$, so $f(x)$ is a decreasing {function}		
Note:	The final A mark can be scored in part (b) from an incorrect $A =$ or from $A = 0$ or no value of		
	A found in part (a)		

	Notes for Question 11 Continued - Alternatives				
(a)					
Note:	Be aware of the following alternative solutions, by initially dividing by " $(x-3)$ " or " $(1-\frac{1+11x-6x^2}{(x-3)''(1-2x)} = \frac{-6x-7}{(1-2x)} - \frac{20}{(x-3)(1-2x)} = 3 - \frac{10}{(1-2x)} - \frac{20}{(x-3)(1-2x)}$				
(b)	$\frac{20}{(x-3)(1-2x)} \equiv \frac{D}{(x-3)} + \frac{E}{(1-2x)} \implies 20 \equiv D(1-2x) + E(x-3) \implies D = -4, E(x-3) \implies D = -4, E(x-3) \implies D = -4, E(x-3) \implies 3 - \frac{10}{(1-2x)} - \left(\frac{-4}{(x-3)} + \frac{-8}{(1-2x)}\right) \equiv 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)}; A = 3, B = 4, C = -4, E(x-3) \implies 0 \implies 0 = -4, E(x-3) \implies 0 \implies $				
	• $\frac{1+11x-6x^2}{(x-3)"(1-2x)"} \equiv \frac{3x-4}{(x-3)} + \frac{5}{(x-3)(1-2x)} \equiv 3 + \frac{5}{(x-3)} + \frac{5}{(x-3)(1-2x)}$ $\frac{5}{(x-3)(1-2x)} \equiv \frac{D}{(x-3)} + \frac{E}{(1-2x)} \implies 5 \equiv D(1-2x) + E(x-3) \implies D = -1, E = -2$				
	$\Rightarrow 3 + \frac{5}{(x-3)} + \left(\frac{-1}{(x-3)} + \frac{-2}{(1-2x)}\right) \equiv 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)}; A = 3, B = 4, C = -\frac{1}{(1-2x)}$	2			
	Alternative Method 1:				
	$f(x) = \frac{1+11x-6x^2}{(x-3)(1-2x)}, \ x > 3 \implies f(x) = \frac{1+11x-6x^2}{-2x^2+7x-3}; \ \begin{cases} u = 1+11x-6x^2 & v = -2x^2 \\ u' = 11-12x & v' = -4x \end{cases}$	+7x-3 +7			
	$f'(x) = \frac{(-2x^2 + 7x - 3)(11 - 12x) - (1 + 11x - 6x^2)(-4x + 7)}{(-2x^2 + 7x - 3)^2}$ Uses quotient ru to find f'(x)	MI			
	$(-2x^2 + 7x - 3)^2$ Correct differentiation	n A1			
	$f'(x) = \frac{-20((x-1)^2 + 1)}{(-2x^2 + 7x - 3)^2} \text{ and a correct explanation,}$ e.g. $f'(x) = -\frac{(+ \text{ ve})}{(+ \text{ ve})} < 0$, so $f(x)$ is a decreasing {function}	A1			
-	Alternative Method 2:	-			
	Allow M1A1A1 for the following solution:				
	Given $f(x) = 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)} = 3 + \frac{4}{(x-3)} + \frac{2}{(2x-1)}$				
	as $\frac{4}{(x-3)}$ decreases when $x > 3$ and $\frac{2}{(2x-1)}$ decreases when $x > 3$				
	then $f(x)$ is a decreasing {function}				