Questi	on Scheme	Marks	AOs
12	$C: y = x \ln x; l \text{ is a normal to } C \text{ at } P(e, e)$		
13	Let x_A be the x-coordinate of where l cuts the x-axis		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \ln x + x \left(\frac{1}{\mathrm{d}x}\right) \{= 1 + \ln x\}$	M1	2.1
	dx (x)	A1	1.1b
	$x = e, m_T = 2 \implies m_N = -\frac{1}{2} \implies y - e = -\frac{1}{2}(x - e)$	M1	3 10
	$y = 0 \Longrightarrow -e = -\frac{1}{2}(x - e) \Longrightarrow x =$	111	5.1a
	<i>l</i> meets <i>x</i> -axis at $x = 3e$ (allow $x = 2e + e \ln e$)	A1	1.1b
	{Areas:} either $\int_{1}^{e} x \ln x dx = [\dots]_{1}^{e} = \dots$ or $\frac{1}{2}((\text{their } x_{A}) - e)e$	M1	2.1
	$\left\{\int x \ln x \mathrm{d}x = \right\} \frac{1}{2}x^2 \ln x - \int \frac{1}{x} \cdot \left(\frac{x^2}{2}\right) \{\mathrm{d}x\}$	M1	2.1
	1_{21} 1_{1} 1_{21} 1_{21} 1_{2}	dM1	1.1b
	$\left\{ = \frac{-x}{2} \ln x - \int \frac{-x}{2} \left\{ \alpha x \right\} \right\} = \frac{-x}{2} \ln x - \frac{-x}{4}$	A1	1.1b
	Area $(R_1) = \int_1^e x \ln x dx = [\dots]_1^e = \dots;$ Area $(R_2) = \frac{1}{2}((\text{their } x_A) - e)e$	M1	3.1a
	and so, Area(R) = Area(R ₁) + Area(R ₂) $\{=\frac{1}{4}e^2 + \frac{1}{4} + e^2\}$		
	Area $(R) = \frac{5}{4}e^2 + \frac{1}{4}$	A1	1.1b
		(10)	
M1.	Notes for Question 13 Differentiates by using the product rule to give $\ln r + r(\text{their } g'(r))$, where G	$u(r) = \ln r$	
A 1.	Since the product rule to give $\ln x + x$ (using $g(x)$), where $g(x) - \ln x$ Correct differentiation of $y = x \ln x$, which can be up simplified or simplified		
А1. M1.	Complete strategy to find the x coordinate where their normal to C at $P(e, e)$ mosts the v avia		
1411.	complete strategy to find the x coordinate where their normal to C at $F(c, c)$ meets the x-axis a Sets $y=0$ in $y-c=m$ (x-c) to find x =		
Note:	m_{-} is found by using calculus and $m_{-} \neq m_{-}$		
A1:	m_T is found by using calculus and $m_N \neq m_T$ l meets x-axis at $x = 3e$, allowing un-simplified values for x such as $x = 2e + e \ln e$		
Note:	Allow $x = awrt 8.15$		
M1:	Scored for either		
	• Area under curve = $\int_{1}^{e} x \ln x dx = \begin{bmatrix} \dots \end{bmatrix}_{1}^{e} = \dots$, with limits of e and 1	and some at	tempt to
	substitute these and subtract		
	• or Area under line $=\frac{1}{2}((\text{their } x_A) - e)e$, with a valid attempt to find	x _A	
M1:	Integration by parts the correct way around to give $Ax^2 \ln x - \int B\left(\frac{x^2}{x}\right) \{dx\}; A \neq 0, B > 0$		
dM1:	dependent on the previous M mark		
	Integrates the second term to give $\pm \lambda x^2$; $\lambda \neq 0$		
A1:	$\frac{1}{2}x^2\ln x - \frac{1}{4}x^2$		
M1:	Complete strategy of finding the area of R by finding the sum of two key area	s. See scher	ne.
A1:	$\frac{5}{4}e^2 + \frac{1}{4}$		

Notes for Question 13 Continued		
Note:	Area(R_2) can also be found by integrating the line <i>l</i> between limits of e and their x_A	
	i.e. Area $(R_2) = \int_{e}^{\text{their } x_A} \left(-\frac{1}{2}x + \frac{3}{2}e \right) dx = \left[\dots \right]_{e}^{\text{their } x_A} = \dots$	
Note:	Calculator approach with no algebra, differentiation or integration seen:	
	• Finding <i>l</i> cuts through the <i>x</i> -axis at awrt 8.15 is 2^{nd} M1 2^{nd} A1	
	• Finding area between curve and the x-axis between $x=1$ and $x=e$	
	to give awrt 2.10 is 3 rd M1	
	• Using the above information (must be seen) to apply	
	Area $(R) = 2.0972 + 7.3890 = 9.4862$ is final M1	
	Therefore, a maximum of 4 marks out of the 10 available.	