Question	Scheme	Marks	AOs	
8 (a)	Deduces that the radius of the circle is 6	B1	2.2a	
	$(x-9)^2 + (y+6)^2 = 36$	M1	1.1b	
		A1	1.1b	
		(3)		
(b)	Let d be the distance from $(9, -6)$ to l			
	$d^2 + 4^2 = 6^2 \Longrightarrow d^2 = \dots$	M1	3.1a	
	$d = \sqrt{20}$ or $2\sqrt{5}$	A1	1.1b	
	$(l_{1}) = -6 + 2\sqrt{5} = -6 - 2\sqrt{5}$	dM1	2.2a	
	$\{1, \} y = -0 + 2\sqrt{3}, y = -0 - 2\sqrt{3}$	A1	1.1b	
		(4)		
(b) Alt 1	Either $\left\{ x = 9 + \frac{8}{2} = 13 \Rightarrow \right\}$ $(13 - 9)^2 + (y + 6)^2 = 36 \Rightarrow y =$	M1	3.1a	
	or $\begin{cases} x = 9 - \frac{1}{2} = 5 \implies \\ 2 = 5 \implies \\ 3 = 5 \implies \\ (5 - 9)^{-1} + (y + 6)^{-1} = 36 \implies y = \dots \end{cases}$			
	$\{l:\} y = -6 + 2\sqrt{5}$	A1	1.1b	
	$\{l:\} y = -6 - 2\sqrt{5}$	dM1	2.2a	
		A1	1.1b	
		(4)		
	(7 marks)			

Questi	Question 8 Notes:		
(a)			
B1:	Deduces that the radius of the circle is 6. This can be achieved by either		
	• Stating that $r = 6$ or radius $= 6$ or $r^2 = 36$		
	• Writing $(x \pm \alpha)^2 + (y \pm \beta)^2 = 36 \text{ or } 6^2; \ \alpha, \beta \neq 0$		
M1	$(x \pm 9)^2 + (y \pm 6)^2 = k; k > 0$		
A1:	$(x-9)^2 + (y+6)^2 = 36$ or $(x-9)^2 + (y+6)^2 = 6^2$ o.e.		
(b)			
M1:	Uses the circle property "the perpendicular from the centre to a chord bisects the chord" in a		
	complete strategy of writing an equation of the form $d^2 + \left(\frac{8}{2}\right)^2 = (\text{their } r)^2$ and progresses as far as		
	$d^2 = \dots$		
A1:	$d = \sqrt{20}$ or $2\sqrt{5}$		
dM1:	depends on the previous M mark		
	Deduces the horizontal line <i>l</i> is <i>d</i> units from the line $y = -6$ and so writes both		
	• $y = -6 + (\text{their } d)$ and $y = -6 - (\text{their } d)$		
A1:	For either:		
	• $y = -6 + 2\sqrt{5}$ and $y = -6 - 2\sqrt{5}$		
	• $y = -6 + \sqrt{20}$ and $y = -6 - \sqrt{20}$		
(b)			
Alt 1			
M1:	Uses the circle property "the perpendicular from the centre to a chord bisects the chord" in a complete strategy of substituting either $x = 13$ or $x = 5$ into their circle equation and progresses as		
	far as $y = \dots$		
A1:	For $y = -6 + 2\sqrt{5}$ or $y = -6 + \sqrt{20}$		
dM1:	depends on the previous M mark		
	Finds y in the form $y = -6 + (\text{their } d)$, deduces the other horizontal line <i>l</i> is <i>d</i> units below the line		
	y = -6 and so writes $y = -6 - (their d)$		
A1:	For either:		
	• $y = -6 + 2\sqrt{5}$ and $y = -6 - 2\sqrt{5}$		
	• $y = -6 + \sqrt{20}$ and $y = -6 - \sqrt{20}$		