Question	Scheme	Marks	AOs
10 (a)	$\frac{\mathrm{d}A}{\mathrm{d}t} \propto \sqrt{A} \implies \frac{\mathrm{d}A}{\mathrm{d}t} = k\sqrt{A} \text{or } \frac{\mathrm{d}A}{\mathrm{d}t} = kA^{\frac{1}{2}}$	B1	3.1b
	$\int \frac{1}{A^{\frac{1}{2}}} \mathrm{d}A = \int k \mathrm{d}t$	M1	1.1b
	$\left\{ \int A^{-\frac{1}{2}} dA = \int k dt \implies \right\} \frac{A^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \left\{ + c \right\} \text{or} 2A^{\frac{1}{2}} = kt \left\{ + c \right\}$	A1	1.1b
	$\{t = 0, A = 9 \implies\} 2\sqrt{9} = k(0) + c$	M1	3.4
	$\Rightarrow c = 6 \Rightarrow 2A^{\frac{1}{2}} = kt + 6$ $\{t = 6, A = 56.25 \Rightarrow\} 2\sqrt{56.25} = k(6) + 6$	dM1	1.1b
	$\Rightarrow 15 = 6k + 6 \Rightarrow k = \frac{9}{6} \Rightarrow k = \frac{3}{2}$ $\Rightarrow 2A^{\frac{1}{2}} = \frac{3}{2}t + 6 \Rightarrow A^{\frac{1}{2}} = \frac{3}{4}t + 3 \Rightarrow A = \left(\frac{3}{4}t + 3\right)^{2} *$	A1*	2.1
		(6)	
(b) (i), (ii)	Either • $t = 12$, $A = \left(\frac{3}{4}(12) + 3\right)^2 = 144 \ \{\approx 143.78\}$ $t = 18$, $A = 272.25 \ \{\approx 271.19\}$ $t = 24$, $A = 441 \ \{> 334.81\}$ $\{t = 30, A = 650.25 \ \{> 337.33\}\}$ or • $A = 143.78 \Rightarrow 143.78 = \left(\frac{3}{4}t + 3\right)^2 \Rightarrow t = 11.98777 \ \{\approx 12\}$ $A = 271.19 \Rightarrow t = 17.95713 \ \{\approx 18\}$ $A = 334.81 \Rightarrow t = 20.39709 \ \{< 24\}$ $\{A = 337.33 \Rightarrow t = 20.48873 \ \{< 30\}\}$	M1	3.4
	Biologist's model works well for $t = 12$ and $t = 18$ but appears to give an overestimate for A (or does not work well) when $t = 24$ and $t = 30$	A1	3.5a
	 E.g. The biologist's model appears to break down for large values of t. This may be because the biologist's model predicts values for A which are greater than the total surface area of the piece of bread used in the experiment. The biologist's results indicate an upper limit for A, but the biologist's model does not give an upper limit for A. 	B1	3.2a
		(3)	
(9 marks)			

Question 10 Notes:		
(a)		
B1:	Translates the biologist's model regarding proportionality into a differential equation, which	
	involves a constant of proportionality. E.g. $\frac{dA}{dt} \propto \sqrt{A} \implies \frac{dA}{dt} = k\sqrt{A}$	
M1:	Correct method of separating the variables A and t in their differential equation	
A1:	$\frac{A^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt$ or $2A^{\frac{1}{2}} = kt$, with or without a constant of integration	
M1:	Some evidence of applying the measurements $t = 0$, $A = 9$ or $A = 9.00$ to a changed	
	equation containing a constant of integration. e.g. c	
dM1:	dependent on the previous M mark	
	Applies $t = 6$, $A = 56.25$ and their value of c to their changed equation which contains their	
	constant of proportionality	
A1*:	Shows that $A = \left(\frac{3}{4}t + 3\right)^2$, with no errors in their working	
(b)		
(i), (ii)		
M1:	Uses the model found in part (a) to find	
	• either values for A when $t = 12$, $t = 18$ and $t = 24$	
	• or values for t when $A = 143.78$, $A = 271.19$ and $A = 334.81$	
A1:	• Either $t = 12 \Rightarrow A = 144$, $t = 18 \Rightarrow A = \text{awrt } 272$ and $t = 24 \Rightarrow A = 441$	
	• or $A = 143.78 \Rightarrow t = \text{awrt } 12, A = 271.19 \Rightarrow t = \text{awrt } 18$ and $A = 334.81 \Rightarrow t = \text{awrt } 20$	
	and evaluates (see scheme) the outcomes of the model	
B1:	See scheme	