Question	Scheme	Marks	AOs
11	$f(x) = \frac{\sin 2x}{-3 + \cos 2x}, \qquad 0 \leqslant x \leqslant \pi$		
(a)	$\begin{cases} u = \sin 2x \qquad v = -3 + \cos 2x \\ \frac{du}{dx} = 2\cos 2x \qquad \frac{dv}{dx} = -2\sin 2x \end{cases}$		
	$f'(x) = \frac{(-3 + \cos 2x)(2\cos 2x) - (\sin 2x)(-2\sin 2x)}{2}$	M1	2.1
	$(-3+\cos 2x)^2$	A1	1.1b
	$f'(x) = 0 \implies (-3 + \cos 2x)(2\cos 2x) - (\sin 2x)(-2\sin 2x) = 0$	M1	1.1b
	$-6\cos 2x + 2\cos^2 2x + 2\sin^2 2x = 0 \implies -6\cos 2x + 2 = 0$ $\implies \cos 2x = \frac{1}{3} *$	A1*	2.1
		(4)	
(b)	Maximum turning point for (i) $y = f(3x) + 5$, (ii) $y = -f\left(\frac{1}{4}x\right)$		
	$\{\cos 2x = \frac{1}{3} \Rightarrow \text{Principal Value} = 1.2309593 \}$		
	(i) For either • $\left\{\cos 6x = \frac{1}{3} (2 \operatorname{nd} \operatorname{sol}^{n}) \Rightarrow\right\} x = \frac{2\pi - 1.2309593}{6}$ • $\left\{\cos 2x = \frac{1}{3} (2 \operatorname{nd} \operatorname{sol}^{n}) \Rightarrow\right\} 3x = \frac{2\pi - 1.2309593}{2} \Rightarrow x =$	M1	3.1a
	$\Rightarrow x = 0.842037 = 0.84 (2 \text{ dp})$	A1	1.1b
	(ii) For either • $\left\{ \cos\left(\frac{1}{2}x\right) = \frac{1}{3} \text{ (1st sol}^n) \Rightarrow \right\} x = 2(1.2309593)$ • $\left\{ \cos 2x = \frac{1}{3} \text{ (2nd sol}^n) \Rightarrow \right\} \frac{1}{4}x = \frac{1.2309593}{2} \Rightarrow x =$	M1	3.1a
	$\Rightarrow x = 2.461918 = 2.46 (2 \text{ dp})$	A1	1.1b
		(4)	
	(8 mar		

Question 11 Notes:		
(a)		
M1:	Attempts to differentiate by using the quotient rule with $u = \sin 2x$ and $v = -3 + \cos 2x$	
	or attempts to differentiate by using the product rule with $u = \sin 2x$ and $v = (-3 + \cos 2x)^{-1}$	
A1:	Correct $f'(x)$, which can be un-simplified or simplified	
M1:	Sets $f'(x) = 0$ and proceeds with their working to set the numerator of $f'(x)$ equal to 0	
A1*:	Shows $\cos 2x = \frac{1}{3}$ with no errors seen in their working	
(b)(i)		
M1:	• Attempts to find the second solution for $\cos 6x = \frac{1}{3}$	
	E.g. $x = \frac{2\pi - 1.2309593}{6} = \frac{5.052225}{6}$	
	• Attempts to find the second solution of $\cos 2x = \frac{1}{3}$ and proceeds to divide their result by 3	
	E.g. $3x = \frac{2\pi - 1.2309593}{2} \Rightarrow x = \frac{2.526112}{3}$	
A1:	0.84 (2 dp) or anything that rounds to 0.84	
(b)(ii)		
M1:	• Attempts to find the first solution for $\cos\left(\frac{1}{2}x\right) = \frac{1}{3}$	
	E.g. $x = 2(1.2309593)$	
	• Attempts to find the first solution of $\cos 2x = \frac{1}{3}$ and proceeds to multiply the result by 4	
	E.g. $\frac{1}{4}x = \frac{1.2309593}{2} \implies x = 4(0.615479)$	
A1:	2.46 (2 dp) or anything that rounds to 2.46	