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(7 marks) 

Question 15 Notes: 
(a)  
M1: Uses 2 2a =  to find both 3a  in terms of k (which can be un-simplified or simplified)          

 and 4a in terms of k (which can be un-simplified or simplified) 

M1: Shows understanding that the sequence is periodic of order 3 by applying complete strategy of  

 finding 5a  in terms of k and setting the result equal to 2 (which is the same as 2a ) 

A1*: Shows that 2 12 0k k+ − =  with no errors in their working 

(b)  

M1: Complete process of finding and using 3k =  to find the values of either 3a  and 4a   or  1a  and 3a   
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