Quest	on Scheme	Marks	AOs	
15	$a_{n+1} = k - \frac{3k}{a}, \ n \in \mathbb{Z}^+; \ k \text{ is a constant}$			
	Sequence a_1, a_2, a_3, \dots where $a_2 = 2$ is periodic of order 3			
(a)	$a_3 = k - \frac{3k}{2} = -\frac{1}{2}k$; $a_4 = k - \frac{3k}{\left(-\frac{1}{2}k\right)} = k + 6$	M1	1.1b	
	$\{a_5 = a_2 \implies \} \ a_5 = k - \frac{3k}{k+6} = 2$	M1	3.1a	
	$\Rightarrow k(k+6) - 3k = 2(k+6) \Rightarrow k^2 + 6k - 3k = 2k + 12$ $\Rightarrow k^2 + k - 12 = 0 *$	A1*	2.1	
		(3)		
(b)	$(k+4)(k-3) = 0 \implies k = -4, 3$	M1	3.1a	
	$k = 3; \ \{a_2 = 2, \} \ a_3 = -\frac{1}{2}, \ a_4 = 9$ $\{k = -4; \ \{a_2 = 2, \} \ a_3 = 2 \ \{\Rightarrow a_4 = 2, \ a_1 = 2; \text{ so reject as } a_1 = a_2\} \}$	A1	1.1b	
	Note: $k = 3; a_1 = 9, a_2 = 2, a_3 = -\frac{3}{2}, a_4 = 9, \text{ etc.}$			
	$\sum_{r=1}^{121} a_r = 40\left(2 - \frac{3}{2} + 9\right) + 9$	M1	2.2a	
	= 40(9.5) + 9 = 380 + 9 = 389	A1	1.1b	
		(4)		
	(7 marks			
Question 15 Notes:				
(a) M1:	Uses $a_2 = 2$ to find both a_3 in terms of k (which can be un-simplified or simplified)			
M1.	and a_4 in terms of k (which can be un-simplified or simplified) Shows understanding that the sequence is periodic of order 2 by emploing complete	a atrata arr a	e	
1111.	shows understanding that the sequence is periodic of order 5 by apprying complete finding a_{z} in terms of k and setting the result equal to 2 (which is the same as a_{z})	e strategy of	L	
A1*:	Shows that $k^2 + k - 12 = 0$ with no errors in their working			
(b)				
M1:	Complete process of finding and using $k = 3$ to find <i>the values</i> of either a_3 and a_4 or a_1 and a_3			
A1:	Uses $k = 3$ to find $a_3 = -\frac{3}{2}$ and $a_4 = 9$ or $a_1 = 9$ and $a_3 = -\frac{3}{2}$			
M1:	Deduces $\sum_{r=1}^{121} a_r = 40(2 + "-1.5" + "9") + "9"$			
A1:	389			