

Figure 3 shows a plot of part of the curve with equation y = f(x), where

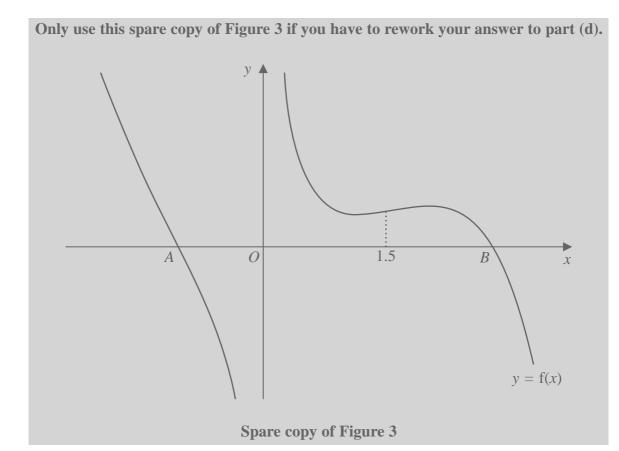
$$f(x) = \frac{2}{x} - e^x + 2x^2$$
 $x \in \mathbb{R}, x \neq 0$

The curve cuts the *x*-axis at the point *A*, where $x = \alpha$, and at the point *B*, where $x = \beta$, as shown in Figure 3.

 $x_{n+1} = -\sqrt{\left(\frac{1}{2}e^{x_n} - \frac{1}{x}\right)} \qquad n \in \mathbb{N}$

(a) Show that α lies between -1.5 and -1

with $x_1 = -1$ can be used to estimate the value of α .


- (i) Find the value of x_3 to 4 decimal places.
- (ii) Find the value of α correct to 2 decimal places.

(2)

A student takes 3 as her first approximation to β . Given f(3) = -1.4189 and f'(3) = -8.3078 to 4 decimal places, (c) apply the Newton-Raphson method once to f(x) to obtain a second approximation to β . Give your answer to 2 decimal places. A different student takes a starting value of 1.5 as his first approximation to β . (d) Use Figure 3 to explain whether or not the Newton-Raphson method with this starting value gives a good second approximation to β . [If you need to rework your answer to part (d) turn over for a spare copy of Figure 3]

The value of β lies in the interval [1.5, 3]

Question 7 continued

